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Abstract—Given the sizable anticipated proliferation of In-
ternet of Things (IoT) devices, Forrester Research forecasts
that the fleet management and transportation industry sectors
will enjoy more growth than others. This may come as no
surprise, since infrastructure (e.g., roadways, bridges, airports)
is a prime candidate for sensor integration to provide real-time
measurements and to support intelligent decisions. The predicted
increase of deployed devices makes it difficult to calculate the
amount of energy required for these functions. Current estimates
suggest that 2 to 4% of worldwide carbon emissions can be
attributed to the information and communication industry [1].
This paper presents novel algorithms designed to optimize power
consumption of an intelligent vehicle counter and classifier
sensors. Each was based on an event-driven methodology wherein
a control block orchestrates the work of different components
and subsystems. System duty-cycle is reduced through several
techniques, and a reinforcement learning algorithm is introduced
to control the system power policy, according to the traffic
environment. Battery life for a sensor supported by a 2300 mAh
battery was extended from 48-hour, adopted all-on policy to more
than 400 days when leveraging the algorithms and techniques
presented in this work.

Index Terms—IoT, low-power, ITS, sensors, reinforcement
learning, DPM

I. INTRODUCTION

Vehicle detection and classification are essential compo-
nents of intelligent transportation systems (ITS) and are inte-
gral to real-time traffic monitoring and analysis. Commuters,
traffic administrators, and regulatory agencies require ITS for
improving traffic control and management, as well as for
planning trips and making routing decisions. A number of
technologies have been leveraged for vehicle detection and
surveillance. These include Inductive Loop Detectors (ILD),
Weigh-In-Motion (WIM) systems, piezoelectric sensors, mag-
netic sensors, video image processors, microwave radars, and
infrared sensors, to name a few. Additional details about these
technologies and others can be found in [2]. Non-traditional
technologies, like Bluetooth, have also been utilized for detect-
ing vehicles and estimating highway travel time [3]. The era of
Internet of Things (IoT), however, is redefining the objectives
and standards of all systems. IoT devices are promoted as
smart, reliable, and low-cost technologies that require little
maintenance. For ITS systems to fit into the emerging IoT
paradigm, they must adhere to inherent requirements of a
model constrained by available resources for processing, mem-
ory, power, and security. This imposes additional difficulties

and challenges for ITS, especially given the nature of the
applications they target. This work reports an extension of
a project focused on designing a low-cost, reliable, and low-
power intelligent vehicle detection and classification sensor
(iVCCS) [4]. Research focuses on minimizing sensor power
consumption while maintaining accurate vehicle detection,
count, and speed estimates.

Power consumption is a major concern for wireless sen-
sor node design relative to the effectiveness of utilizing a
single element for unit processing, power management ef-
ficiency, algorithm operation, and, most importantly, overall
component architecture of the system. Device and peripheral
selection is a crucial first step [5]–[7]. Second generation
iVCCS (iVCCS 2ndG) was designed to operate on low power.
Literature suggests building a predictor to aid in estimating
residual power in the main energy storage and to predict
the amount of power harvested during future time slots [8],
[9]. Such mechanism indicate which functionalities to disable
and for how long, based on the corresponding peripheral
power profile. In [8], researchers optimized the RF (radio
frequency) transmission time, as it proved to be the most
power-hungry element in their system. Optimal transmission
interval was determined. Determining ideal software relative
to energy consumption is critical. Given that the consumption
associated with an algorithm is not optimized, it is pointless
to select low-power components, as several techniques must
be orchestrated to achieve satisfactory performance. Most
energy management implementations involve intelligent use of
peripherals and sensors in the system [8]–[11]. As such, this
selection should be central to the power management process.
An algorithm must be employed to determine the optimal
time for enabling and disabling each module on the board,
as well as for indicating the flexible control and switching
between power schemes. A fixed profile operating the system
in different situations is ineffective and inefficient. Authors
in [12] modeled the Dynamic Power Management (DPM)
algorithm to characterize system behavior as a time series of
busy and idle periods, suggesting that various idle intervals
require different sleep modes. They reasoned that switching
necessitates more time and energy than nominal consumption.
Accordingly, the researchers employed adaptive tree learning
for policy selection and utilized a predictor to indicate idle
states and durations.

In [13], researchers used Reinforcement Learning to adap-



tively choose the preferred power management policy for a
given idle state wherein an action is taken and objectives are
evaluated. Based on evaluation outcomes subject to constraints
(e.g. performance), state-action pairs are rewarded/punished
and a Q-value is assigned. A variation of the Q-learning al-
gorithm, namely SARSA (State-Action-Reward-State-Action),
was utilized to monitor and record all values in a Q-table. The
authors assumed idle time is known and can be calculated. A
more recent paper [14] also utilized a Q-learning algorithm to
optimize power consumption in their video encoder System-
on-Chip (SoC). Researchers in [15] proposed a machine learn-
ing algorithm to select the optimal policy online. A variant of
reinforcement learning with weights was placed on policies,
and a loss function was used to update weights. This group
also assumed known idle times.

The balance of this paper is organized as follows. Section
II summarizes the system platform, and Section III discusses
various proposed techniques for enhancing system power
consumption. A description of the reinforcement learning (RL)
algorithm used to further optimize power consumption is
presented in Section IV. Section V evaluates this proposed
approach, and Section VI concludes the paper.

II. SYSTEM OVERVIEW

iVCCS 2ndG is a fully autonomous and low-power sensor
designed to self-power and energy harvest without sacrific-
ing performance. The updated iVCCS is carefully crafted
in a compact design (45×30×6 mm) and combines high-
performance, energy-efficient components equipped with a
power management subsystem for minimizing consumption
while maintaining accurate vehicle count, logging, and speed
estimation. Fig. 1 shows the system board and its primary
components. A battery gauge monitors battery capacity and
nano-power load switches placed at the power lines of certain
energy-hungry sensor components (e.g., RF wireless module,
GPS receiver, SD card and others) are reported to the micro-
controller unit (MCU).
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Fig. 1. Overview of the iVCCS components.

The sensor is built around an ultra-low-power platform from
STMicroelectronics with an ARM CORTEX-M0+ 32-bit RISC
core STM32L071 [16]. Kionix KMX62 is a six degrees-of-
freedom magnetometer/accelerometer inertial sensor system

[17] that senses changes in the magnetic flux of the earth’s sur-
face when vehicles enter the vicinity. KMX62 is a reliable and
power-efficient sensor, consuming 395 µA at high-resolution
mode and 1 µA in standby mode. Magnetometer full-scale
range is ±1200 µT, and digital bit depth is 16 bits, resulting
in a magnetic sensitivity of ±0.0366 µT, which was ±0.1 µT
in iVCCS 1stG.

The system integrates a microSD card slot used for raw data
acquisition (e.g., vehicle magnetic signature and accelerometer
data) and timestamps of vehicle arrival and departure, as
well as status messages. The microSD card is connected to
the microcontroller through serial peripheral interface (SPI).
An on-board 64 Mb serial NOR Flash memory serves as
a secondary storage medium. Macronix’s MX25R64 [18] is
an ultra-low-power CMOS flash memory with minimum of
100,000 erase/program cycles and 20-year data retention; it
features a typical standby current of 5 µA, a maximum 4 mA
read current, and 6 mA write current. Readers interested in
further details on system components are encouraged to refer
to [4], [19], [20].

III. SYSTEM ALGORITHMS AND ANALYSIS

A. Detection Algorithm

The detection algorithm developed in iVCCS 1stG is ported
to the new design with modifications to fit the new platform
[19]. The algorithm processes the magnetic flux sampled by
KMX62 and detects the arrival and departure of a vehicle
passing through the sensor zone. Vehicles have ferrous ma-
terials that cause disturbance in the local magnetic field and
create a push-and-pull effect in flux lines as the vehicle passes.
This produces fluctuations in the magnitude of the magnetic
field. KMX62 is a tri-axial sensor that represents each sample
point by three 16-bit words (i.e., x, y, z). The microcon-
troller calculates the magnitude and feeds it to the algorithm
for processing. Three thresholds and three debounce timers
govern the algorithm. RTH represents the baseline threshold,
OTH the onset threshold, and HTH the holdover threshold.
These parameters define vehicle arrival and departure. Fig. 2
depicts a sample signature of a vehicle with thresholds and
timers illustrated. Given that the magnitude reaches the OTH
threshold, a timestamp of the arrival is logged. If magnitude
drops below HTH, the vehicle is assumed departed, another
timestamp is logged, and the vehicle counter adds one. In
the absence of a vehicle in the vicinity, the magnitude should
stay below RTH. Given the magnitude rises between RTH and
HTH, calibration procedure is executed. Debounce timers are
crucial for eliminating misdetections and double detections.
Onset debounce timer ODT is used to filter glitches in the
signature that result in misdetection. Double detections are
a consequence of ferrous material distributed throughout the
body of a vehicle. For example, long trucks with sizable
separation between axles cause dips and steep fluctuations
between OTH and HTH, resulting in counting a single vehicle
twice. Holdover debounce timer HDT is used to overcome this
problem.



Fig. 2. Example of a vehicle signature.

B. Data Buffering Technique

As indicated in Section II, the microSD card is used to log
timestamps and store status messages, as well as raw data.
However, microSD cards are energy inefficient and counter
intuitive in the low power paradigm, simply dumping all data
and messages directly to the card. According to SanDisk
microSD card specifications [21], Read and Write procedures
can deplete up to 100 mA current consumption. Notably, it
is impractical to turn the card on and off for each detected
vehicle due to the time delay required for initializing the card
each time it is powered on. Specifications also refer to an
automatic sleep feature wherein the cards enter sleep mode
when commands have not been received within 5 ms. Although
cards consume 350 µA in this mode, this amount is inefficient.
On-board ultra-low-power flash memory is used to buffer data
before shifting it to the microSD card, primarily because it
excels in energy efficiency and read/write performance when
compared with SD cards. As such, this type of memory is
suitable for instantaneous data logging.
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Fig. 3. Buffering technique.

MX25R64 exhibits a page-basis write functionality wherein
page size is 256 bytes. The host can commence reading at any
byte address, but can only write at the beginning of a page
address. Hence, the microcontroller must track data length for
writing in order to avoid gaps in the flash. Fig. 3 illustrates
this procedure, and Alg. 1 provides a high-level description of
the process.

C. Triggered Vehicle Detection

Typically, and in accordance with the configured data
rate, the magnetometer regularly interrupts the microcontroller
when a new sample is acquired in the buffer (i.e., Data Ready
Interrupt [DRI]). Desired behavior interrupts MCU only when

Algorithm 1 Data Buffering Technique.
1: if new sector then
2: erase sector
3: end if
4: Move: RAM Buffer ← Data
5: if RAM Buffer Size ≥ 256 then
6: Move: Flash← RAM [0 : 255]
7: Move: RAM [0...255]← RAM [256 : 511]
8: end if
9: if Flash Full Pages ≥ Flash Threshold then

10: SD Card: open file
11: for each Flash page i do
12: Move: SDCard← Flash[i]
13: end for
14: Move: SDCard← RAM [0 : 255]
15: SD Card: close file
16: end if

a vehicle is approaching and triggers the detection algorithm.
In addition to DRI, KMX62 magnetometer has two other inter-
rupts, Magnometer Motion Interrupt (MMI), and Buffer Full
Interrupt (BFI). MMI is issued when the difference between
two consecutive samples on one axis reaches a programmed
threshold in a specific direction (e.g., increasing or decreasing)
and remains above that threshold for a specified number of
samples (i.e., time). KMX62 also has a buffer capable of
holding 64 samples of components x, y, and z.

MMI Interrupt
BFI Interrupt

SMP_TH
1 64

Fig. 4. KMX62 MMI and BFI interrupts operation.

Buffer functions in triggered mode. Given that a physical
interrupt is caused by a digital engine (e.g., magnetometer
or accelerometer), a trigger event is asserted and SMP_TH
number of samples prior to the event are retained. Sample
collection continues until the buffer is full. Data is reported
in chronological order. Fig. 4 illustrates this mechanism. MMI
is configured to trigger the buffer, and a BFI is routed to the
MCU through one of the GPIOs [17]. SMP_TH is set to 63,
which causes KMX62 to immediately interrupt the MCU after
the first sample received at the event of an MMI interrupt when
a vehicle approaches.

Alg. 2 describes how the manner in which the algorithm
reads and controls data flow from the KMX62. MCU executes
a dummy read for a number of samples, primarily because the
first few samples might not relate to a vehicle signature. The
algorithm is configured to feed the last 24 samples prior to
vehicle approach and discard the first 40 samples from the
buffer. After 24 samples are read and processed, and given
that the system’s state machine indicates detection, the MCU
continues pulling new samples through Data Ready Registers



until vehicle departure.

Algorithm 2 Data flow control.
1: if DRI Flag then
2: Read data from Data Ready registers
3: else if BFI Flag then
4: Disable BFI
5: Discard 40 samples
6: while Samples Counter < 24 do
7: Read data from Samples Buffer
8: Increase Samples Counter
9: end while

10: if State = Detection then
11: Enable DRI
12: else
13: Enable BFI
14: end if
15: end if

D. Empirical Power Consumption Analysis

In this section, the system’s power consumption is empir-
ically analyzed by dividing the sensor’s one-hour cycle into
states, and then measuring the current drained in each state.
Assume the sensor is deployed on a highway with a 65 mph
speed limit and vehicles are spaced 1 second apart with flow
rate of 3089 passenger vehicles per hour in a single lane.
Flash threshold of MCU buffers data from flash to microSD
card is 10 pages (i.e., 2560 bytes). The sensor logs TA (time
of arrival), TD (time of departure) and vehicle number in
counter (N) in each direction. Additionally, sensor logs battery
status each minute. During time laps of one hour, the sensor
will advance through the following states: battery status log,
vehicle log, flash-to-microSD card buffering, and standby.

N01_TA@21225109.160156<CR><LF>

N01_TD@21225109.519531<CR><LF>

N01_N#73<CR><LF>

b) N01_TA@21225109.160156<CR><LF>

N01_TD@21225109.519531<CR><LF>

N01_N#73<CR><LF>

b)

[BAT: VOLT = 4021 mV, CAP = 2480 mAh, SOC = 95 %]<CR><LF>a) [BAT: VOLT = 4021 mV, CAP = 2480 mAh, SOC = 95 %]<CR><LF>a)

Fig. 5. a) Battery status log line b) Vehicle timestamp example.

During a one hour period, the sensor will log 60 lines of
battery status at 51 bytes each. Fig. 5a. shows an example line.

Bbat = 60× 51 = 3060 [Bytes/Hour] (1)

For each detected vehicle, the timestamps and counter
compose 54 bytes of logged data (or 56 bytes when the counter
is four digits). See Fig. 5b.

Bveh = 3089× 54 = 166806 [Bytes/Hour] (2)

According to the aforementioned assumptions, the sensor
will collect a total of 169,866 bytes in one hour. Since the
MCU moves data from Flash to microSD card every 10 Flash
pages (i.e., 2560 bytes), the results is 66 transfers.

Timing and drained current for each state is measured using
a high-accuracy Fluke 289 multimeter [22]. Fig. 6 depicts
current consumed by the sensor at different execution states.
Each data transfer is 1 second in duration and consumes at
most 30 mA. Average current for one hour is written as:

Iavg =
TBIB + (3600− TB)Id

3600

=
66× 30 + 3534× 4

3600
= 4.48 [mA],

(3)

where TB , IB are buffering time and current, respectively. Id
is the detection/standby current. Thus, a 2300 mAh battery
with up to an 80% derating factor should last for:

TBat =
2300× 0.8

4.48
= 411 [h] (4)
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Fig. 6. Current consumption and different states.

IV. REINFORCEMENT LEARNING FOR POWER
MANAGEMENT

Originally, the sensor exhibited an all-on policy, wherein
all on-board components were turned on and the sensor lasted
only 48 hours. Operation flexibility was added by turning
specific components on and off, following a predetermined
action flow and resulting in reduced current consumption, as
shown in Fig. 6. Although power consumption was targeted
for enhancement by incorporating the ARM Cortex-M0 micro-
processor sleep mode, doing so caused misdetections and/or
double counting for vehicles traveling with less than a 2-
second following distance. This is attributed to a long wake-
up time from sleep mode once a passing vehicle was detected.
Nevertheless, in a low-traffic situation where vehicle following
distance was more than 5 seconds, sleep mode is expected to
perform flawlessly and to conserve power. A dynamic power
management scheme is planned to manage this process.

A. Problem Formulation

The proposed system is modeled as a Markov Decision
Process with four-state space: High-Power High-Traffic (HP-
HT), High-Power Low-Traffic (HP-LT), Low-Power High-
Traffic (LP-HT), and Low-Power Low-Traffic (LP-LT). Fig.



7 shows the system state transition diagram. Solid arrows
represent agent transitions. Dashed arrows represent environ-
ment transitions. The agent (i.e., iVCCS) is not penalized for
environment transitions.

Fig. 7. State transition diagram.

The agent can perform two actions, namely switching to
high-power mode or to low-power mode. Given that the agent
takes action, a corresponding reward is given and a new
experience (e.g., tuple of state, action, reward < s, a, r >)
is formed. Q-value Q∗(s, a) is the expected value of an action
a in state s, following the optimal policy; this is defined as:

Q∗(s, a) =
∑
s′

P (s′|s, a)(R(s, a, s′) + γV ∗(s′)), (5)

where V ∗(s) is the expected value following an optimal policy
from state s. The Temporal Differences (TD) equation is used
for estimating this value:

Q(s, a) = Q(s, a) + α(r + γmax
a′

Q(s′, a′)−Q(s, a)), (6)

where maxa′ Q(s′, a′) is the maximum Q-value for future state
s′ over all possible actions a′. 0 < α ≤ 1 determines the
weight of newer values compared with older values; γ is the
discount factor; and r is the reward corresponding to an action.

Simulation demonstrated how the algorithm converges in
approximately 500 steps and how the agent correctly learned
the action necessary for each state.

B. Power Consumption Analysis

When employing RL algorithm, current drained by the
system can be calculated utilizing a similar approach to the
analysis detailed in Section III-D. In this scheme, the algorithm
places the microcontroller core in sleep mode during standby
state, reducing current consumed to 2 mA. Given that a vehicle
approaches the sensor zone, microcontroller experiences an
interruption, exits sleep mode, and switches to detection state.
Consequently, drained current becomes a function of the
number of vehicles detected by the sensor. Fig. 9 represents
current consumed when a vehicle is detected. Vehicle time
spent traveling over the sensor determines length of detection

0 200 400 600 800 1000 1200

Step Number

0

50

100

150

200

250

A
cc

u
m

u
la

te
d

 Q
-V

al
u
es

Fig. 8. Q-Matrix convergence.
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Fig. 9. Current consumed when MCU wakes up from sleep mode.

state, which was statistically calculated as 0.5 seconds on
average.

Acknowledging previous assumptions, equation (3) can be
rewritten to express current consumption, leveraging the RL
algorithm:

Iavg =
TBIB +NvTvId + (3600− TB −NvTv)Is

3600
= 3.71 [mA],

(7)

where Nv is number of vehicles detected per hour; Tv is the
detection period; and Is is the sleep state current. Given a
2300 mAh battery, battery life is extended to:

TBat =
2300× 0.8

3.71
= 496 [h] (8)

V. EXPERIMENTAL SETUP AND RESULTS

The proposed system was tested in two scenarios: a) in lab
using a train operating continuously for 24 hours and b) during
an on-campus field test in which two sensors were deployed
at the campus entrance for 24 hours.

A. Lab Test

The detection algorithm was validated, and battery life was
examined in the lab test, wherein the sensor was placed under
a miniature train track with a train operating for 24 hours
at varying speeds. Fig. 10 illustrates the setup. Results were
compared with the empirical analysis detailed in Section III-D.



Fig. 10. Lab setup using a train. Sensor is placed under the track, and ZigBee
AP is next to it.

Fig. 11 lists how often the sensors detected the train, along
with reported speed calculated using the distance between the
two sensors.
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Fig. 11. Speed estimates of the train over 24 hours.

The sensor consumed only 11 mAh in over 24 hours (i.e.,
0.458 mAh per hour), which is 10 times less than predicted
in the analysis described in Section III-D.
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Fig. 12. Battery capacity of the sensor over 24 hours in a lab test.

B. On-Campus Deployment

Two sensors were deployed at the south entrance of the
campus: one with the proposed DPM algorithm managing
the power policy and the other running a plain version of
the firmware. Fig. 13 depicts the sensors’ locations. Sensors
were deployed for 24 hours, collecting the number of vehicles
that entered the campus, time of arrival and departure, as
well as battery capacity for comparing power consumption
of both versions of firmware. Speed was calculated in a post-
processing stage, wherein detected vehicle timestamps were
used with known separation distance (e.g., 2 meters) between

Fig. 13. Sensor setup on the entrance of campus.
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Fig. 14. Speed estimates of detected vehicles on campus.

the two sensors. Speed and power results are depicted in Fig.
14 and Fig. 15, respectively.

Average speed was 5 mph, which is fairly logical given
sensor location at the entrance to the campus and a 10 mph
speed limit. Processing the collected power data revealed that
the sensor running original firmware (sans DPM) consumed
approximately 18 mAh, resulting in a battery life of over 100
days. Alternatively, the sensor executing the DPM algorithm
consumed only 4 mAh over 24 hours, indicating a battery life
of over 400 days. Both estimates assumed a 2300 mAh battery
with a derating factor of 80%. The original sensor detected
only 11 more vehicles (2.9%) than the sensor executing the
DPM algorithm.

0 500 1000 1500

Time [minute]

2365

2370

2375

2380

2385

2390

2053

2053.5

2054

2054.5

2055

2055.5

2056

2056.5

2057

B
at

te
ry

 C
ap

ac
it

y
 [

m
A

h
]

Without DPM

With DPM

Fig. 15. Battery capacity of sensor with and without DPM over 24 hours.



VI. CONCLUSION

This research presented algorithms and methods for opti-
mizing system response and reducing power consumption of
an intelligent vehicle counter and classifier sensor (iVCCS).
The initial sensor prototype adopted an all-on policy, wherein
all components were active in spite of the fact that battery life
was depleted in nearly 48 hours. Algorithms presented herein
shift operation methodology from polling mode to an event-
driven, interrupt-based process in which the system responds
to vicissitudes of the surrounding environment. Conservative
analysis revealed an 18-day battery life, whereas experimental
results demonstrated overall system battery life was extended
to over 100 days for a 2300 mAh battery.

A reinforcement learning approach was proposed for de-
signing a dynamic power-management algorithm to further
minimize power consumption. The algorithm observes the traf-
fic and controls system power policy, according to the environ-
ment and sensor states. The algorithm was also compared with
the previous one-policy optimization, and an enhancement of
over 400 days was observed using the DPM scheme.

Future studies include additional field evaluations in various
traffic environments (e.g., urban roadways and highways).
Additionally, iVCCS 2ndG will be equipped with energy
harvesting and management chips for hosting a solar panel
through a dedicated port. Future research should aim toward
a self-powered system by exploiting this capability.
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