

UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

INTELLIGENT POWER AWARE ALGORITHMS FOR TRAFFIC SENSORS

A THESIS

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

MASTER OF SCIENCE

in

Electrical and Computer Engineering

By

SIRAJ MUHAMMAD
 Norman, Oklahoma

2018

INTELLIGENT POWER AWARE ALGORITHMS FOR TRAFFIC SENSORS

A THESIS APPROVED FOR THE
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

BY

Dr. Hazem Refai, Chair

Dr. Thordur Runolfsson

Dr. Kam Wai C. Chan

© Copyright by SIRAJ MUHAMMAD 2018
All Rights Reserved.

To the soft-hearted and the sapient, my parents, Thanaa and Muhammad.

To the great and trustworthy, my dear brother, Obada.

To the beautiful little roses that adorn my life, my sisters, Einas and Israa.

To you all I dedicate this work,

iv

Acknowledgements

I would like to offer my genuine appreciation and heartfelt gratitude to my dear advisor,

Dr. Hazem Refai for his unparalleled support, mentorship, and constant encouragement

to grow and succeed.

I extend my sincere appreciation to my committee members, Dr. Thordur Runolfsson

and Dr. Kam Wai Chan for their time and insightful suggestions to improve this work.

I would also like to acknowledge Dr. Walid Balid for his assistance in the development

of this research. Special thanks as well to Michelle Farabough for editing this thesis.

To my extended family at OU, professors, students, and staff, I am thankful to you all

for everything you have provided me during my time here!

v

Table of Contents

Acknowledgements ... iv

Table of Contents ... v

List of Tables ... viii

List of Figures .. ix

Abstract ... xii

Chapter 1 Introduction .. 1

Chapter 2 Background and Related Work .. 5

2.1 Magnetometer Theory of Operation ... 5

2.2 Related Research Work .. 6

Chapter 3 System Platform Overview .. 10

3.1 Microcontroller ... 11

3.2 Magnetometer ... 12

3.3 ZigBee Module ... 12

3.4 GPS ... 13

3.5 Real-Time Clock .. 13

3.6 Data Storage ... 14

3.7 Battery Gauge ... 14

3.8 Energy Harvester and Management Unit ... 15

Chapter 4 Porting Algorithms from 1stG to 2ndG ... 17

4.1 Detection and Counting Algorithm .. 17

4.2 Adaptive Compensation of Baseline Drift ... 19

4.3 Adaptive Compensation of the RTC Frequency Drift 21

vi

4.4 Optimized ARM DSP Functions .. 24

4.5 Text Formatting Function ... 24

Chapter 5 System Algorithms and Power Analysis ... 25

5.1 Data Buffering Technique .. 25

5.2 Triggered Vehicle Detection .. 27

5.3 Communication Scheme ... 29

5.4 microSD Card Power Analysis ... 30

5.4.1 Continuous Data Transfer ... 30

5.4.2 Triggered Data Transfer ... 32

5.5 ZigBee Power Analysis .. 33

5.5.1 Theoretical Analysis ... 33

5.5.2 Empirical Data Collection .. 37

5.6 System Level Power Consumption Analysis ... 38

Chapter 6 Reinforcement Learning for Power Management ... 41

6.1 Introduction to Reinforcement Learning .. 41

6.2 RL for iVCCS ... 44

6.3 Problem Formulation .. 45

6.4 Bellman Equation vs. Temporal Differences Equation 47

6.5 Reducing Number of Actions ... 50

6.6 Power Consumption Analysis .. 52

6.7 Simulation using Real-World Data .. 53

Chapter 7 Experiments and Results .. 55

7.1 Detection Algorithm Validation ... 55

vii

7.2 Power Optimization Validation .. 57

7.2.1 Lab Test .. 57

7.2.2 On-Campus Test ... 59

Chapter 8 Conclusion and Future Work ... 62

8.1 Conclusion .. 62

8.2 Future Work .. 63

References .. 65

Appendix A: Ported Algorithms ... 71

Appendix B: Optimized Algorithms .. 78

viii

List of Tables

Table 1. ZigBee Phases, Timings, and Currents .. 36

Table 2. Comparison of energy sources ... 63

ix

List of Figures

Figure 1. Magnetic field of the earth [11]. ... 5

Figure 2. Disturbance in magnetic flux lines caused by a vehicle. 6

Figure 3. Changing system sleep mode according to load [21]. 8

Figure 4. Overview of the system components [7]. .. 10

Figure 5. iVCCS PCB components. ... 11

Figure 6. Simplified schematic of the battery gauge unit [32]. 15

Figure 7. ADP5091 detailed functional block diagram [33]. ... 16

Figure 8. Detection algorithm parameters applied on a vehicle flux magnitude [7]. 18

Figure 9. Detection algorithm state machine [7]. 𝑭𝑭𝑭𝑭(𝒌𝒌) is the field magnitude. 19

Figure 10. Baseline magnitude drift with (blue) and without (yellow) adaptive

compensation [8]. ... 20

Figure 11. High-level description of adaptive compensation algorithm. x, y, and z are

the measured field’s components. xacm, yacm, and zacm are the accumulated values. 20

Figure 12. GPS-based RTC time drift correction system block diagram [8]. 21

Figure 13. A flow chart depicting the algorithm for RTC drift calibration. 22

Figure 14. PPS-RTC difference calculation sub process. ... 23

Figure 15. Measuring process flow chart inside RTC 1 Hz signal interrupt function. ... 23

Figure 16. Block diagram illustrating data buffering technique. 26

Figure 17. High level description of data buffering technique, 27

Figure 18. MMI and BFI operation in KMX62 magnetometer. 28

Figure 19. High level description of triggered vehicle detection algorithm. 29

Figure 20. Data format for each sample. .. 30

x

Figure 21. Timing diagram for writing to microSD card. .. 31

Figure 22. ZigBee transmit period (TTX) and receive period (TIdle). 35

Figure 23. Power consumption of ZigBee TX and RX compared to baseline test. 37

Figure 24. Example for battery status log line (a) and Vehicle timestamp (b). VOLT,

CAP, and SOC are battery voltage, capacity, and state-of-charge, respectively. 38

Figure 25. Current consumption at various states. ... 39

Figure 26. State transition diagram. ... 46

Figure 27. Q-Matrix convergence: Bellman vs. TD equation. 48

Figure 28. Normalized Q-Matrix for Bellman equation. .. 49

Figure 29. Normalized Q-Matrix for TD equation. .. 50

Figure 30. Bellman equation convergence: 2 actions vs 4 actions. 51

Figure 31. Q-Matrix using two actions. .. 51

Figure 32. Current consumed when MCU wakes from sleep mode. 52

Figure 33. Traffic trend and power policy on campus. .. 54

Figure 34. Traffic trend and power policy on Britton Highway. 54

Figure 35. iVCCS setup on Britton Highway. .. 55

Figure 36. Battery capacity of regular and triggered detection sensors over a 180-minute

time period. ... 56

Figure 37. Lab test using a train and two sensors placed under the track. 58

Figure 38. Lab test: Speed estimates of the train for a time period over 24 hours. 58

Figure 39. Lab test: Battery capacity of the sensor for a time period over 24 hours...... 59

Figure 40. Campus field test setup. .. 60

Figure 41. Campus field test: Number of vehicles detected and speed estimates. 61

xi

Figure 42. Battery capacity of sensor with and without DPM for a time period over 24

hours. .. 61

xii

Abstract

The Internet of Things (IoT) is reshaping our world. Soon our world will be

based on smart technologies. According to IHS Markit forecasts, the number of

connected devices will grow from 15.4 billion in 2015 to 30.7 billion in 2020. Forrester

Research predicts that fleet management and the transportation sectors lead others in

IoT growth. This may come as no surprise, since the infrastructure (roadways, bridges,

airports, etc.) is a prime candidate for sensor integration, providing real-time

measurements to support intelligent decisions. The energy cost required to support the

anticipated enormous number of predicted deployed devices is unknown. Currently,

experts estimate that 2 to 4% of worldwide carbon emissions can be attributed to power

consumption in the information and communication industry [1].

This thesis presents several algorithms to optimize power consumption of an

intelligent vehicle counter and classifier sensor (iVCCS) based on an event-driven

methodology wherein a control block orchestrates the work of various components and

subsystems. Data buffering and triggered vehicle detection techniques were developed

to reduce duty cycle of corresponding components (e.g., microSD card, magnetometer,

and processor execution). A sleep mode is also incorporated and activated by an

artificial intelligence-enabled, reinforcement learning algorithm that utilizes the field

environment to select proper processor mode (e.g., run or sleep) relative to traffic flow

conditions. Sensor life was extended from 48 hours to more than 200 days when

leveraging 2300 mAh battery along with algorithms and techniques introduced in this

thesis.

1

Chapter 1 Introduction

Transportation systems are at the heart of our socio-economic environment and

played a major role in shaping the trajectory of economic strength and quality of life in

a given community. The opposite effect is also true. For a strong and continually

prosperous economy, it is a necessity for underlying infrastructure to be equipped and

up-to-date with technological advancements characteristic of other industry sectors.

Transportation systems must integrate and interoperate with others.

Intelligent Transportation System (ITS) technology has been accelerated since

the turn of the century due to a variety of technological forces that have caused an ever-

increasing need to efficiently utilize the transportation infrastructure. In spite of the fact

that other industries (e.g., information technology, communications) have evolved at a

faster pace, the 2010-2011 ITS America Annual Report informs [2]:

• 77% of fixed bus route agencies have real-time arrival data.

• 94% of toll roads have electronic collection.

• 70% of the population is covered by 511 systems in 38 states.

• Thousands of miles of highway and arterial roads are managed under Traffic

Management Centers surveillance.

ITS is one of the most promising sectors for Internet of Things (IoT) hype,

primarily due to the impact transportation system elements will have on domains

connected to the Internet cloud. Smart traffic signals and surveillance systems enable

more convenient traffic planning by communicating traffic conditions and flow to

connected vehicle on-board systems, which, in turn, will aid in saving an enormous

amount of time due to traffic congestion delays. ITS America reports that each year the

2

average American spends 40 hours sitting in traffic [3]. Moreover, public safety

vehicles, buses, and commercial vehicle fleets will benefit from a smart, connected

infrastructure able to communicate valuable information about traffic and road

conditions. Cisco Systems has already introduced a high-level system overview, namely

Cisco Connected Roadways [4].

An essential ITS system component is vehicle detection and classification.

However, the integral real-time traffic monitoring and analysis functionality proves

problematic. Commuters, traffic administrators and agencies must rely on such systems

for improving traffic control and management, as well as for trip planning and routing

decisions.

Technologies used for vehicle detection and surveillance can be categorized into

two types:

- In-roadway sensors, including Inductive Loop Detectors (ILD), magnetic

sensors, piezoelectric sensors, and Weigh-In-Motion (WIM) sensors.

- Off-roadway sensors, including video image processors, microwave radars,

infrared sensors, ultrasonic sensors, and passive acoustic arrays sensors.

Interested readers can find additional details about these technologies in [5]. Existing

technologies, like Bluetooth, have also been used to detect vehicles and estimate

highway travel time [6].

Regardless of the technology, the era of IoT is redefining the objectives and

standards of all systems. IoT device are expected to be smart, reliable, and low-cost,

without significant maintenance. For ITS systems to fit into the IoT paradigm, they

must adhere to the inherent need for constrained resources for processing, memory,

3

power, and security functionality. These could impose further difficulties and

challenges on ITS, especially given the nature of the applications they target. For

instance, some Automatic Vehicle Classification (AVC) systems cannot save collected

data for more than several days. WIM systems, on the other hand, can store data for up

to a year. Problems with power consumption persist, whether at the processing or

communication stage at the point when data is transmitted to an access point for further

processing.

The work detailed in this thesis is an extension to a project focused on designing

a low-cost, reliable, and low-power intelligent vehicle counter and classification sensor

(iVCCS) system [7] in which the sensor exploits the physical phenomenon of magnetic

field disturbance caused by ferrite materials in the body of a vehicle. The sensor relies

on a triaxial magnetometer to measure magnetic field before measurements are

transmitted to processing platform. Previous work (i.e., first generation iVCCS [iVCCS

1stG]), proved the design concept with high accuracy and reliability [7]–[9]. A second

generation iVCCS (iVCCS 2ndG) was designed around a more powerful, 32-bit

microcontroller equipped with an on-die digital signal processing (DSP) core. Special

attention to power consumption was lead to the development of the new iVCCS 2ndG

platform.

This research focuses on minimizing sensor power consumption while

maintaining accurate vehicle detection, count, and speed estimation. Several algorithms

were ported and modified from iVCCS 1stG to accommodate the new platform and

reduce overall circuit current consumption of the system. A number of new techniques

were also introduced to enable interrupt-based microcontroller operations and reduce

4

duty cycle. In addition, a dynamic power management was proposed, leveraging the

merits of artificial intelligence.

The balance of this thesis is organized, as follows:

• Chapter 2 includes the theoretical concept of magnetometers and their

application in vehicle detection and counting; a literature review of work related

to low-power embedded systems and dynamic power management is also

provided.

• Chapter 3 focuses on an overview of the system platform, describing hardware

and specifications.

• Chapter 4 describes algorithm modifications ported from the iVCCS 1stG to

iVCCS 2ndG.

• Chapter 5 introduces new techniques developed to further optimize sensor

operations relative to interrupts in favor of a polling methodology for reducing

duty cycle; a power analysis of components is also presented.

• Chapter 6 highlights the dynamic power management problem and proposes a

reinforcement algorithm to predict activities to reduce power consumption.

• Chapter 7 reports results collected from tests and deployments obtained in both

lab and real-world scenarios.

• Chapter 8 concludes the thesis and offers direction for further research.

5

Chapter 2 Background and Related Work

2.1 Magnetometer Theory of Operation

Geomagnetic field is a force field that surrounds the earth’s surface and flows

from the earth’s interior into the space. It is similar to a field generated by a simple bar

magnet tilted, currently estimated at an 11.5° angle. Although the force field’s intensity

is in constant flux and has experienced large-amplitude variations over the past 800

thousand years [10], it is considered rather uniform at any region on the earth’s surface,

ranging between 25 and 65 µT (0.25 to 0.65 gauss).

Figure 1. Magnetic field of the earth [11].

Ferrous materials in traveling vehicles cause small, local disruptions in the

geomagnetic field. Due to high magnetic permeability of these ferrous materials, the

flux lines of the field are absorbed and distorted in a non-linear form as a vehicle passes

6

through the field, as shown in Figure 2. Several factors play a role in the resulting

intensity magnitude and direction of field changes (e.g., speed, density, and size

mechanical form).

Figure 2. Disturbance in magnetic flux lines caused by a vehicle.

Measured disturbance is known as the vehicle magnetic signature, which is

unique and differs from one vehicle to another. The disturbance can be modeled as a

number of magnetic dipoles [12]. Signatures can be measured by magnetometers, which

report three geomagnetic components of the field: north 𝐵𝐵𝑥𝑥, east 𝐵𝐵𝑦𝑦, and vertical 𝐵𝐵𝑧𝑧.

2.2 Related Research Work

Power consumption is a primary concern for wireless sensor node design, as

each element of the design (e.g., processing unit, power management unit (PMU),

processing algorithm, and, most importantly, system components) is affected. As such,

it is critically important to carefully select each device and peripheral as a first step to

sensor design [13]–[15]. iVCCS 2ndG was purposefully designed to optimize low power

consumption.

While technological advancements have reached a point at which application

performance is ensured, energy efficiency remains challenging, especially given IoT

7

integration. Modeling power consumption at the early stages of development and pre-

deployment becomes decisive. Authors in [16] propose a general methodology to

simulate wireless sensor node power consumption by profiling three essential aspects of

WSNs: networking, sampling, and processing. Although electrical component

characteristics and wireless interfaces play a major role in determining power

consumption, a particular standard, component, and technology becomes crucial when

developing an algorithm. A model for performance evaluation is necessary for

optimization.

Literature has suggested building a predictor for estimating remaining power in

the main energy storage and predicting the amount of power harvested during future

time slots [17], [18]. Such mechanisms aid in determining which functionalities to

disable and for how long based on a corresponding peripheral power profile. This stage

of development can benefit from the power consumption model proposed in previous

references. In [17], authors optimized RF transmission time — the most power-hungry

system element — to determine an optimal transmission interval.

Software development is dependent upon energy consumption. Given that a

nonoptimal algorithm is executed for energy consumption, selecting low-power

components is inconsequential. In fact, several techniques must then be orchestrated to

achieve a satisfactory performance. Most energy management implementations involve

smart and intelligent use of peripherals and system sensors [17]–[20]. Indeed, the heart

of the power management process should be an algorithm that determines when to

enable and disable each module on the board, in addition to flexibly controlling and

switching between power schemes. This is preferred over a fixed profile that runs the

8

system in its many situations. Such an algorithm is commonly referred to as Dynamic

Power Management (DPM).

Researchers have defined and tried to resolve the DPM problem. Authors in [21]

modeled system behavior as a time series of busy and idle periods, suggesting that

various idle intervals require different sleep modes (see Figure 3), primarily because

switching takes time and more energy than nominal consumption. They employed

adaptive tree learning as a method for solving policy selection wherein a predictor is

used to indicate when and for how long idle states occur.

Figure 3. Changing system sleep mode according to load [21].

In [22], authors used Reinforcement Learning (RL) to adaptively choose the

optimal power management policy in a given idle state wherein an action is taken and

objectives are evaluated. Based on outcomes, subject-to-constraints (e.g. performance)

state-action pairs are rewarded/punished, assigning a 𝑄𝑄-value. A variation of the 𝑄𝑄-

Learning algorithm, namely SARSA (State-Action-Reward-State-Action), is used to

monitor values in a 𝑄𝑄-table. Idle time is known and can be calculated according to

assumptions.

9

A more recent paper [23] used the 𝑄𝑄-learning algorithm to optimize power

consumption in a video encoder System-on-Chip (SoC).

Authors in [24] proposed a machine learning algorithm to select the optimal

policy online. The algorithm considers a variant of RL with weights placed on policies

and a loss function to update weights. Assumed idle times are known; the way in which

loss function affects weight is not clear.

10

Chapter 3 System Platform Overview

 iVCCS 2ndG is a fully autonomous system designed to achieve self-powered,

low-power operation through energy harvesting without sacrificing performance. The

new system is carefully crafted in a compact design (45×30×6 mm) that combines high-

performance, energy-efficient components and that is equipped with a power

management subsystem for minimizing energy consumption while maintaining accurate

vehicle count, logging, and speed estimation. Figure 4 shows the interconnections

among various components. A gauge monitors and reports battery capacity to the

microcontroller unit (MCU). Nano-power load switches are placed at the power lines of

certain energy-hungry sensor components, including the RF wireless module, GPS

receiver, and SD card, among others. Energy-efficient algorithms were developed to

accurately detect, count, estimate speed, and control various system components. Figure

5 shows top and bottom views of the printed circuit board.

Figure 4. Overview of the system components [7].

11

Figure 5. iVCCS PCB components.

3.1 Microcontroller

At the heart of the sensor system lies an ultra-low power platform manufactured

by STMicroelectronics, equipped with an ARM CORTEX-M0+ 32-bit RISC core –

12

STM32L071 [25]. This microcontroller is characterized by number of features that

make it appealing for low-power applications [26]. These include:

− 0.29 μA standby mode (3 wakeup pins)

− 0.43 μA stop mode (16 wakeup lines)

− 0.86 μA stop mode + RTC + 20 KB RAM retention

− Down to 93 μA/MHz in run mode

− 5 μs wakeup time (from flash memory)

− Core from 32 kHz up to 32 MHz max

− 1 to 25 MHz crystal oscillator

− 32 kHz oscillator for RTC with calibration

− Up to 192 KB flash memory with ECC

− 20 KB RAM

3.2 Magnetometer

Kionix KMX62 is a 6 degrees-of-freedom magnetometer/accelerometer inertial

sensor system [27] that senses changes in the magnetic flux of earth’s surface due to

vehicles passing in its vicinity. KMX62 is a very reliable and power-efficient sensor,

consuming 395 µA at high-resolution mode and 1 µA in standby mode. The

magnetometer’s full-scale range is ±1200 µT, and digital bit depth is 16 bits, resulting

in a magnetic sensitivity of ±0.0366 µT compared to ±0.1 µT in iVCCS 1stG.

3.3 ZigBee Module

The radio frequency (RF) frontend utilizes a ZigBee transceiver from ZLG

based on an NXP JN5168 microcontroller [28]. AW516x is a low-power, high-

performance ZigBee module that incorporates the IEEE 802.15.4 standard and supports

13

a variety of protocols on top (e.g., FastZigBee, ZNET, ZigBee-PRO, and RF4CE). The

AW5161P0CF module used in iVCCS 2ndG has a small footprint (13.5×16.5 mm) and

features a ceramic antenna. Receiver sensitivity is -95 dBm, consuming 21 mA, and

transmitter power is 2.5 dBm with 18 mA current consumption. The engine features a

deep sleep mode with 100 nA typical current. Data transfer rate of the system is 2

Mbps.

3.4 GPS

Time synchronization is achieved via a GPS module manufactured by Quectel.

L76-L GPS receiver module integrates GLONASS and GPS systems [29] and provides

a built-in low-noise amplifier (LNA) for improved performance for 33 tracking

channels, 99 acquisition channels, and 210 PRN channels. The module features EASY

technology [29] and allows L76-L to automatically calculate and predict orbits using

ephemeris data stored in the internal flash of the module. This reduces time-to-fix even

in indoor situations with poor signal levels. Current consumption is 25 mA in

acquisition mode and 7 µA in backup mode.

3.5 Real-Time Clock

STM32L071 also offers an internal Real-Time Clock (RTC) and features low

power operation [26]. It has on-the-fly correction capability with a range of 1 to 32767

RTC clock pulses, allowing the system’s 1 Hz clock to synchronize with the Pulse Per

Second (PPS) signal of the GPS module subsequent to fix acquisition. The internal RTC

is clocked by a 32.768 kHz external ultra-low power oscillator manufactured by SiTime

[30], which offers a current consumption of <1 µA and frequency stability of ±5, ±10,

14

±20 ppm options over temperature, as well as the world’s smallest footprint (1.5×0.8

mm CSP).

3.6 Data Storage

The system integrates a microSD card slot used to for raw data acquisition (e.g.,

vehicle magnetic signature or accelerometer), in addition to timestamps of vehicles

arrival/departure and status messages. The micro-SD card is connected to the

microcontroller through serial peripheral interface (SPI). In addition, an on-board 64

Mb serial NOR flash memory is available as a secondary storage medium. Macronix’s

MX25R64 [31] is an ultra-low power CMOS flash memory with a minimum of 100,000

erase/program cycles and 20-year data retention. MX25R64 features a typical 5 μA

standby current, a maximum 4 mA read current, and 6 mA write current.

3.7 Battery Gauge

As part of the power management subsystem, a smart battery gauge is integrated

for monitoring battery capacity and protecting it from deep discharge and over charge,

especially for Li-Po batteries. Texas Instrument BQ27621-G1 [32] was used, as it

provides advanced algorithms for calculating remaining battery capacity (mAh), state-

of-charge (%), battery voltage (mV), and temperature (°C); it also requires little to no

configuration and can be accessed through 400 kHz I2C interface. Figure 6 shows a

simplified schematic of gauge-battery pack connection.

15

Figure 6. Simplified schematic of the battery gauge unit [32].

3.8 Energy Harvester and Management Unit

ADP5091 [33] is an ultra-low PMU that harvests energy from photovoltaic (PV)

and thermoelectric generators (TEG) sources. The unit can efficiently convert power

from sources with range as low as 6 µW to 600 mW without losing significant energy

(i.e., sub-microwatt). The chip features a cold-start circuit with input voltage as low as

380 mV. After cold-start, the regulator can operate at an input range of 80 mV to 3.3 V.

Stable DC-to-DC boost conversion is realized through the use of a maximum power

point tracking (MPPT) controller. Figure 7 shows a detailed functional diagram of the

device.

16

Figure 7. ADP5091 detailed functional block diagram [33].

17

Chapter 4 Porting Algorithms from 1stG to 2ndG

iVCCS 2ndG uses most algorithms developed in iVCCS 1stG with necessary

modifications for platform differences. iVCCS 1stG was based on an 8-bit

microcontroller and firmware developed in BASCOM; iVCCS 2ndG is based on a 32-bit

ARM Cortex microcontroller. Firmware was developed in C due to its efficiency and

speed. In this chapter, essential algorithms and proposed flow charts are discussed, as

well as differences between 1st and 2nd generations.

4.1 Detection and Counting Algorithm

The detection algorithm developed in iVCCS 1stG is ported to the new design

with modifications to fit the new platform [8]. The algorithm processes the magnetic

flux sampled by KMX62 and detects vehicle arrival/departure as it passes through the

sensor zone. As aforementioned, vehicles have ferrous materials that cause disturbance

in the local magnetic field, creating a push-and-pull effect in the flux lines as the vehicle

passes. The result is fluctuations in the magnitude of the magnetic field. KMX62 is a

tri-axial sensor that represents each sample point by three 16-bit words (i.e., x, y, z).

Microcontroller calculates magnitude, and then communicates it to the algorithm for

processing. Three thresholds and three debounce timers govern the algorithm. 𝑅𝑅𝑇𝑇𝑇𝑇

represents the baseline threshold; 𝑂𝑂𝑇𝑇𝑇𝑇 is the onset threshold; and 𝐻𝐻𝑇𝑇𝑇𝑇 is the holdover

threshold. These parameters define vehicle arrival/departure. Figure 8 depicts a sample

vehicle signature with illustrated thresholds and timers. Given that the magnitude

reaches 𝑂𝑂𝑇𝑇𝑇𝑇 threshold, a timestamp of arrival is logged. If magnitude drops below 𝐻𝐻𝑇𝑇𝑇𝑇,

the vehicle is assumed departed, and another timestamp is logged, adding ‘1’ to the

vehicle counter. In the absence of a vehicle in the vicinity, magnitude is expected to

18

stay below 𝑅𝑅𝑇𝑇𝑇𝑇. The state-machine of the algorithm is illustrated in Figure 9. C code

can be found in Appendix A.

Figure 8. Detection algorithm parameters applied on a vehicle flux magnitude [7].

Given magnitude rises between 𝑅𝑅𝑇𝑇𝑇𝑇 and 𝐻𝐻𝑇𝑇𝑇𝑇, calibration is executed. Debounce timers

play a crucial role in eliminating misdetections and double detections (i.e., counted

twice). Onset debounce timer 𝑂𝑂𝐷𝐷𝐷𝐷 is used to filter glitches in a signature that result in

misdetections. Double detections occur as a result of ferrous material distributed

throughout the body of a vehicle. Long trucks, for instance, with extended separations

between axles cause dips and steep fluctuations between 𝑂𝑂𝑇𝑇𝑇𝑇 and 𝐻𝐻𝑇𝑇𝑇𝑇, resulting in a

single vehicle counted twice. Holdover debounce timer 𝐻𝐻𝐷𝐷𝐷𝐷 is leveraged to overcome

this problem.

19

Figure 9. Detection algorithm state machine [7]. 𝑭𝑭𝑴𝑴(𝒌𝒌) is the field magnitude.

4.2 Adaptive Compensation of Baseline Drift

Magnitude measured by magnetometer sensor (i.e., KMX62) can suffer from

drifts due to temperature, displacement caused by vehicles hitting the sensor, and/or

operating stress. Consequences of such result in misdetection and speed estimation

errors. Figure 10 shows an example of such a drift over 240 minutes due to temperature

[8]. Consequently, magnetometer baseline should be regularly tracked and re-calibrated

using a Moving Average Filter (MAF). Given that magnitude drops below on-set

threshold 𝑂𝑂𝑇𝑇𝑇𝑇, calibration algorithm is executed. Moreover, calibration algorithm is

carried out subsequent to confirmation of vehicle departure. Algorithm C code (See

Appendix A) was redesigned in iVCCS 2ndG to make it more readable and intuitive.

Previously, multiple flags and function calls were required for recalibration. A high-

level description of the algorithm is shown in Figure 11.

20

Figure 10. Baseline magnitude drift with (blue) and without (yellow) adaptive
compensation [8].

Inputs: x, y, z

Outputs: xref, yref, zref

1: Disable external interrupts except DRI

2: FOR i < M

3: WAIT FOR Magnetometer Data-Ready interrupt

4: xacm ← xacm + READ x

5: yacm ← yacm + READ y

6: zacm ← zacm + READ z

7: LOOP

8: xavg ← xacm / M

9: yavg ← yacm / M

10: zavg ← zacm / M

11: Enable external interrupts

Figure 11. High-level description of adaptive compensation algorithm. x, y, and z
are the measured field’s components. xacm, yacm, and zacm are the accumulated

values.

21

4.3 Adaptive Compensation of the RTC Frequency Drift

RTC skew can occur over time, desynchronizing local and remote clocks due to

a number of factors, including variations in temperature, effect of passive board

components, and tolerances specified by manufacturers. Because time synchronization

is critical among system sensor nodes, especially for speed estimation, the drift

phenomenon should be compensated. A GPS-based approach was developed to correct

RTC clock drift in iVCCS 1stG and ported to C in iVCCS 2ndG. A block diagram of the

algorithm is depicted in Figure 12.

Figure 12. GPS-based RTC time drift correction system block diagram [8].

After the GPS is locked to a fix, GPS module provides a 1 Hz signal, Pulse Per Second

(PPS) routed to one of the GPIOs (General Purpose Input/Output) of the

microcontroller. This signal is considered the accurate reference for RTC calibration.

The RTC 1 Hz signal frequency 𝑓𝑓𝑅𝑅𝑅𝑅𝑅𝑅
(𝑀𝑀𝑀𝑀𝑀𝑀) is compared to PPS signal frequency 𝑓𝑓𝑃𝑃𝑃𝑃𝑃𝑃

(𝐺𝐺𝐺𝐺𝐺𝐺).

The algorithm measures both signal durations using high frequency clock 𝑓𝑓𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
(𝑀𝑀𝑀𝑀𝑀𝑀),

driven from the MCU’s 8 MHz oscillator. Error induced in measuring clock (i.e.,

oscillator) is canceled in the differentiation stage since both signals are measured at the

same time using the same clock.

22

The algorithm commences by aligning RTC and PPS signals. Subsequently, two 32-bit

MCU timers (i.e., Cnt1 and Cnt2) are configured in up-counting mode and controlled by

RTC 1 Hz signal and PPS 1 Hz signal, respectively. Both originate at the first rising

edge of 1 Hz signal and stop on the following rising edge. Time correction coefficient is

defined as the difference between the two counters. Figure 13 and Figure 14 show a

flow chart that explains the algorithm in detail.

Figure 13. A flow chart depicting the algorithm for RTC drift calibration.

The algorithm sets a flag measure_freq to inform the interrupt function of RTC 1

Hz — called each time one second passes — to start counters, and the stop them on the

next rising edge of the signal (i.e., one period of 1 Hz signal).

Calibrate RTC? Stop MGM INT RTC or PPS
round?

Meas. Count <
10?

Yes

Measure Flag = 1

Measure Flag = 0?

Yes

Accumulate Counter

Measurements Count
+1

No

Calculate the Average

Measure RTC
Duration = 0

Clear Meas. Counters

PPSYes

No

No

RTC

RTC-PPC
Difference

Subprocess

This sets the
measurement round
for PPS signal

Flag is set to zero once the
interrupt function is done
measuring

23

Figure 14. PPS-RTC difference calculation sub process.

Once interrupt measuring is complete, the function sets measure_freq to zero,

indicating the completion of the measuring phase relative to the main function. The

microcontroller proceeds with the algorithm (Figure 15). The process is repeated for the

number of taps of a moving average filter (default value is 10), and then measurements

are averaged. The same procedure is repeated for PPS from the GPS module after it is

locked and synchronized. Information about C implementation is available in Appendix

A.

Figure 15. Measuring process flow chart inside RTC 1 Hz signal interrupt
function.

Calculate the
Average Subtract Counters Convert to time

difference
Update the RTC
shift registers

Clear the
measurements

counters
Calibrate RTC = 0Measure RTC

Duration = 1Align Phases = 1

PPS Meas. Done

Calibrate
RTC? Yes

RTC Round?

Yes

Measure Flag
= 1?

Yes

Counters Off?
Yes

Start Counters

No

Stop Counters

Measure Flag = 0

Interrupt Function Callback

End

No

No

No

24

4.4 Optimized ARM DSP Functions

Notably, the function for calculating magnitude was not optimized, requiring an

average 0.75 milliseconds. Initially, generic C functions were used for floating point

arithmetic, although these functions in generic C libraries are considered too slow and

not optimized for a specific platform. ARM provides a DSP library that is optimized for

some select microcontrollers, among them the on utilized for iVCCS 2ndG. ARM DSP

cores provide 0.62 milliseconds improvement. Code is available in Appendix A.

4.5 Text Formatting Function

Text formatting required additional time — up to 3.5 millisecond. C-style text

formatting function, namely sprintf, were used to convert floating point data into ASCII

characters writable for a text file. To mitigate delay, float data were converted to 16-bit

data, and an optimized function for converting integers to ASCII based on Terje

Mathisen’s algorithm was developed (See algorithm in Appendix A). Delay was

reduced to 0.1776 milliseconds for single number conversion and 0.5625 milliseconds

for complete reading from the magnetometer. Throughput of data collection was

improved.

25

Chapter 5 System Algorithms and Power Analysis

Previous chapters have discussed how some algorithms were changed from 1st to

2ndG, porting them from the former to the latter 32-bit platform. In essence, the

algorithms are identical, although two natures imposed a necessity for changing the

operation to ensure accurate functionality. Another important aspect of iVCCS 2ndG

features low-power operation. Notably, storage and communication are two of the most

energy-hungry components of an embedded system. In this chapter, algorithms

developed for mitigating power consumption induced by the microSD card, ZigBee,

and continuous data fetching from the magnetometer KMX62 are discussed. An

analysis of microSD card and ZigBee current consumption for the proposed algorithms

is presented, as well as an estimate of system battery life at this stage of processing.

5.1 Data Buffering Technique

As indicated in Section 3.6, microSD card is used to log timestamps and store

other status messages and raw data. However, microSD cards are energy inefficient and

counter intuitive to the low power paradigm due to the fact that they simply dump data

and messages directly to the card. According to SanDisk microSD card specifications

[34], Read and Write procedures can take up to 100 mA in current consumption.

Turning the card on/off when data must be stored is impractical due to required time

delay for repeated card initialization each time the card is powered on. Specifications

also refer to the automatic sleep feature wherein cards enter sleep mode, given no

commands are received within 5 ms. In this mode, cards consume 350 μA. This

indicates inefficiency for system duration. Consequently, the on-board ultra-low power

flash memory is utilized to buffer data before shifting it to the microSD card, primarily

26

because the memory excels in energy efficiency and read/write performance when

compared to the microSD card. The result is suitable for instantaneous data logging.

Figure 16. Block diagram illustrating data buffering technique.

MX25R64 exhibits a page basis write functionality, in which page size is 256

bytes. Host can commence reading at any byte address, although it can only write at the

beginning of a page address. Hence, microcontroller must retain length of data required

for the write function to avoid creating gaps in the flash memory. Figure 16 illustrates

the procedure and Figure 17 provides a high-level description of the algorithm. C

implementation can be found in Appendix B.

011001…01001101 000110010

256 Bytes

Threshold

Page 0

RAM Buffer Flash

Page 1

Page M

…

microSD Card

RAM Flash microSD
CardTimestamps

27

1: IF New Sector THEN

2: Erase Sector

3: END IF

4: RAM Buffer ← Data

5: IF RAM Buffer Size ≥ 256 THEN

6: Move data: Flash ← RAM

7: Shift remaining data in RAM

8: END IF

9: IF Flash Full Pages ≥ Flash Threshold THEN

10: Open new file in SD card

11: FOR EACH Flash Page i DO

12: SD card ← Flash page i

13: END FOR

14: SD card ← RAM Buffer

15: Close file in SD card

16: END IF

Figure 17. High level description of data buffering technique,

5.2 Triggered Vehicle Detection

Typically, the magnetometer interrupts the microcontroller at any time in which

a new sample is acquired in the buffer, in accordance with configured data rate (i.e.,

Data Ready Interrupt [DRI]). Desired behavior occurs only when an approaching

vehicle interrupts MCU, thus, triggering execution of the detection algorithm. KMX62

magnetometer 2 is interrupted, as are DRI, Magnetometer Motion Interrupt (MMI), and

Buffer Full Interrupt (BFI). MMI is issued when the difference between two

consecutive samples on one axis reaches a programmed threshold in a specific direction

(i.e., either increasing or decreasing) and stays above the threshold indicated for a

28

specific number of samples (i.e., time). The KMX62 buffer can operate in triggered

mode and hold 64 samples of three components (x, y, z). Given a physical interrupt is

caused a digital engine (i.e., magnetometer or accelerometer), a trigger event is asserted,

and SMP_TH number of samples prior to the event are retained. Sample collection

continues until the buffer is full. Data is reported in chronological order, as explained in

Figure 18. MMI is configured to trigger the buffer, and BFI is routed to MCU through

one of the GPIOs [27]. SMP_TH is set to 63, which causes KMX62 to immediately

interrupt MCU subsequent to the reception of the first sample received after an MMI

interrupt (i.e., vehicle approach/detection).

Figure 18. MMI and BFI operation in KMX62 magnetometer.

Figure 19 describes the way in which the algorithm reads and controls data flow from

KMX62. MCU completes a dummy read for a number of samples, primarily because

the first few samples might not relate to a vehicle's signature. The algorithm is

configured to consider the last 24 samples prior to vehicle approach, discarding the first

40 samples from the buffer. After 24 samples are read and processed and given the state

machine of the system still indicates detection, the MCU continues pulling new samples

through Data Ready Registers until vehicle has departed.

MMI Interrupt BFI Interrupt

SMP_TH1 64

29

1: IF DRI Flag THEN

2: Read data from DRI registers

3: ELSE IF BFI Flag THEN

4: Disable BFI

5: Discard 40 samples

6: WHILE Samples Counter < 24 THEN

7: Read data from Samples Buffer

8: Increase Samples Counter

9: END WHILE

10: IF State = Detection THEN

11: Enable DRI

12: ELSE

13: Enable BFI

14: END IF

15: END IF

Figure 19. High level description of triggered vehicle detection algorithm.

5.3 Communication Scheme

The primary role of the RF in this system is to report data (i.e., count and

timestamps) to an access point (AP). This function is complete once each day, typically

at midnight. However, the system is also capable of interacting with user requests.

Notably, the ZigBee module is one of the most power-consuming units on board, and

constantly turning it on will quickly deplete the battery.

MCU is not required to use RF interface, except for initial status reporting after

sensor is initialized and data reporting at midnight. To accommodate user/AP requests,

MCU must activate the ZigBee module for one minute, during which time it sends a

status message reporting battery charge level and number of vehicles counted. Given

that a command is received within this minute, the timer is reset, allowing for additional

30

commands. If none are received, RF module is shut down. Implementation is described

in Appendix B.

5.4 microSD Card Power Analysis

In this section, microSD card power consumption and its effect on battery life

are analyzed. Data written to a vehicle signature file is considered for two scenarios: 1)

a regular, non-optimized scenario, wherein the microcontroller continuously writes data

coming from the magnetometer as non-stop; and 2) an optimized scenario, wherein the

microcontroller writes data coming from the magnetometer only when a vehicle is in

the vicinity, thus eliminating ambient magnetic flux.

5.4.1 Continuous Data Transfer

Each sample consists of three components, x, y, and z in floating-point format.

The microcontroller first converts data to ASCII to be written in a text file. Resulting

data is a 25-byte chunk for each sample read from the magnetometer, as shown in

Figure 20.

Figure 20. Data format for each sample.

Assuming that magnetometer sampling rate is 100 Hz, results for one hour (3600

seconds) are calculated, as follows:

3600 × 100 × 25 = 9 × 106 [𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵].

MicroSD card is interfaced with MCU via Serial Peripheral Interface (SPI) protocol.

Interface clock is derived from the microcontroller system clock (8 MHz) with a pre-

31

scale of 2; therefore, SPI speed is 4 Mbit/s. Hence, time to write one sample to microSD

card can be calculated as:

𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
25 [𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏]

4 [𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀/𝑠𝑠] = 524288 [𝐵𝐵𝐵𝐵𝐵𝐵]
= 47.68 [𝜇𝜇𝜇𝜇]

Notably, MCU spends some time pulling and conditioning data from the magnetometer,

as illustrated in Figure 21. Since sampling rate is 100 Hz, microcontroller waits 0.01

second for sample arrival and spends 3.5 ms for conditioning.

Figure 21. Timing diagram for writing to microSD card.

Total time for writing all bytes for one hour is determined by the following equation.

𝑇𝑇𝑊𝑊𝑇𝑇 =
9 × 106

524288
= 17.1661 [𝑠𝑠]

Hence, hourly duty cycle for writing is:

𝐷𝐷𝐶𝐶𝑊𝑊 =
17.1661

3600
= 0.004768 = 0.4768%

Consequently, hourly duty cycle for idle time is:

𝐷𝐷𝐶𝐶𝐼𝐼 = 1 − 0.004768 = 0.995231 = 99.5231%

According to SanDisk datasheets [34], average current for writing to microSD card is

100 mA, and average current for idle (i.e., sleep) state is 150 µA. Average consumed

current for write and idle states are calculated, as follows.

𝐼𝐼𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎 = 0.004768 × 100 𝑚𝑚𝑚𝑚 = 0.4768 [𝑚𝑚𝑚𝑚ℎ]

𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎 = 0.995231 × 150 𝜇𝜇𝜇𝜇 = 0.1493 [𝑚𝑚𝐴𝐴ℎ]

32

Total average consumed current is 0.6261 mAh.

5.4.2 Triggered Data Transfer

The same methodology can be applied to the second scenario for triggering data

transfer. Assuming average speed of the vehicle is 65 mph and average vehicle length is

5 m, a sampling rate of 100 Hz would result in 18 samples for each vehicle. Assuming a

length of 30 samples by taking into account samples before vehicle arrival and after

departure:

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑝𝑝𝑝𝑝𝑝𝑝 𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 30 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑣𝑣𝑣𝑣ℎ𝑐𝑐 × 25 𝐵𝐵/𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

= 750 [𝐵𝐵/𝑣𝑣𝑣𝑣ℎ𝑐𝑐]

Therefore, time to write all bytes of a signature for one vehicle can be calculated as:

𝑇𝑇𝑊𝑊 =
750

524288
= 1.4305 [𝑚𝑚𝑚𝑚]

Assuming traffic volume at a highway designated detection point is 1000 vehicles per

hour, total time for write operation is determined by:

𝑇𝑇𝑊𝑊𝑇𝑇 = 1.4305 [𝑠𝑠]

Corresponding hourly duty cycle is determined by:

𝐷𝐷𝐶𝐶𝑊𝑊 =
1.4305
3600

= 0.000397

Hourly duty cycle for idle time is, then:

𝐷𝐷𝐶𝐶𝐼𝐼 = 1 − 0.000397 = 0.999603

Average consumed current can now be calculated in the following way.

𝐼𝐼𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎 = 0.000397 × 100 𝑚𝑚𝑚𝑚 = 0.0397 [𝑚𝑚𝑚𝑚ℎ]

𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎 = 0.999603 × 150 𝜇𝜇𝜇𝜇 = 0.1499 [𝑚𝑚𝑚𝑚ℎ]

Total average consumed current is 0.1896 mAh.

33

A reduction of 0.4365 mAh (or 69.6%) in consumed power is achieved using the new

mechanism by refraining from writing ambient samples between vehicles

arrivals/departures. It is worth noting that this number is further improved by reducing

microSD card idle time. Buffering data through the serial flash is used for this purpose.

5.5 ZigBee Power Analysis

This section describes ZigBee power consumption when the module is mounted

on the iVCCS sensor. First, a theoretical analysis of the consumed current based on the

datasheet of the module (AW516P0) is presented [28]. Next, empirical data for three

scenarios are provided, the first of which is a baseline, wherein all components are shut

down and battery capacity is logged every minute for an hour. An intermittent

transmission scenario with module going back to active mode is reported, and finally,

the module is configured in receive mode.

5.5.1 Theoretical Analysis

To calculate module power consumption in various modes for different

functionalities, scenario timing is required along with corresponding current consumed

in each stage. Typically, these figures are provided by the manufacturer and published

in their datasheets. The ZigBee module utilized in this research is based on NXP JN516

ZigBee platform, and the following analysis is based on their documentation.

Consider an example wherein the sensor continuously performs the following

actions to send status beacons:

1. Start the module.
2. Receive data frame from the host CPU/MCU.
3. Perform Clear Channel Assessment (CCA).
4. Transmit data frame containing a payload of 60 bytes.
5. Transmission is complete; reception is off; module is active.
6. After 10 minutes, repeat from Step 2.

34

Duration and current corresponding to the aforementioned steps are determined below.

Module startup

JN516x devices start up using a fast RC oscillator before executing bootloader code at

26 MHz. After an additional 170-740 μs, the faster 32 MHz crystal becomes stabilized

and a glitch-less switchover occurs. Application code is expected to wait until the

crystal is stable for radio transmission, which occurs 230 μs later; thus, requiring 1 ms

from reset/wake event. During the time in which transceivers are not operating, the

module is still considered in active mode, assuming the module is working at default

clock rate 16 MHz. In this case, current consumed will be 4.98 mA.

UART Data Transmission

According to the datasheet, receiving data from the host MCU consumes 5.04

mA. The example used in this work assumes 60 bytes data payload. Hence, it is

necessary to determine the time required for the UART peripheral to send the following

frame:

60𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 × �8𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑏𝑏𝑏𝑏𝑏𝑏 + 1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑏𝑏𝑏𝑏𝑏𝑏�/57600𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 10.42 [𝑚𝑚𝑚𝑚]

Each byte has a start bit and a stop bit — thus, 8+1+1. Default baud rate of the module

is 57600 bps. Time taken to receive the frame is 10.42 ms.

Performing CCA

Assuming a channel is clear after CCA and that random back-off period is two,

the time required for executing the CSMA/CA algorithm in a non-beacon enabled

network is: back off period = 0.96 ms, and CCA period = 0.128 ms.

The application operates throughout the back-off period, and transceiver remains

on, even though it is neither transmitting nor receiving. Current drawn during this

35

period is 5.16 mA. During CCA, the radio receiver is on and, therefore, a 20.28 mA

current is drawn.

Data Transmission

The medium access control (MAC) layer header size (𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀) is set to 25 bytes

for 64-bit source and destination addresses. The physical (PHY) layer header size

(𝐻𝐻𝑃𝑃𝑃𝑃𝑃𝑃) is fixed and equal to 6 bytes. Payload frame size (𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) depends on the

amount of data transmitted — loaded up to 114 bytes. In the example reported a 60-byte

payload was assumed:

𝑇𝑇 =
𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀 + 𝐻𝐻𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

250 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
× 8 =

25 + 6 + 60
250 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

= 2.912 [𝑚𝑚𝑚𝑚]

Therefore, time required to transmit a data frame is 2.912 ms, during which the

transceiver consumes a current of 18 mA.

Idle Time

Per the example provided, the sensor will refrain from transmission for 10

minutes, during which time the transceiver remains on, even though there is no TX or

RX. Current consumed by the ZigBee module is 5.16 mA. Figure 22 illustrates the

timing diagram of this process.

Figure 22. ZigBee transmit period (TTX) and receive period (TIdle).

It is necessary to calculate time and current consumed during the TX cycle.

36

Table 1. ZigBee Phases, Timings, and Currents
Phase Current (mA) × Time (ms) Charge (µC)

UART Data Transmission 5.04 𝑚𝑚𝑚𝑚 × 10.42 𝑚𝑚𝑚𝑚 52.52

CCA Back-off 5.16 𝑚𝑚𝑚𝑚 × 0.96 𝑚𝑚𝑚𝑚 4.95

CCA Period 20.28 𝑚𝑚𝑚𝑚 × 0.128 𝑚𝑚𝑚𝑚 2.6

Transmit Data 18 𝑚𝑚𝑚𝑚 × 2.912 𝑚𝑚𝑚𝑚 52.416

Total 𝟏𝟏𝟏𝟏𝟏𝟏.𝟒𝟒𝟒𝟒𝟒𝟒

Total time = 14.42 ms. Average current consumed during transmission = Total Charge /

Total Time = 7.8 µA.

Since a transmission is assumed to occur once every 10 minutes, hourly duty cycle of

RF transmission is given by:

𝐷𝐷𝐶𝐶𝑇𝑇𝑇𝑇 =
0.01442 × �60

10�
3600

= 0.0024%

Consequently, hourly duty cycle for idle time is:

𝐷𝐷𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 100 − 0.0024 = 99.9976%

Average hourly consumption can be calculated in the following way:

𝐼𝐼𝑇𝑇𝑇𝑇 = 0.000024 × 7.8 𝜇𝜇𝜇𝜇 = 0.0001872 [𝜇𝜇𝜇𝜇ℎ]

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 0.999976 × 5.16 𝑚𝑚𝑚𝑚 = 5.16 [𝑚𝑚𝑚𝑚ℎ]

Total hourly consumption is:

𝐼𝐼𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 5.16 [𝑚𝑚𝑚𝑚ℎ]

Notably, this value does not take into account the current drawn by the sensor or the

self-discharge of the battery.

37

5.5.2 Empirical Data Collection

Data were collected for three scenarios: a baseline, wherein all components

where powered down or put in sleep mode if there is no power switch (e.g.

magnetometer/accelerometer), as well as TX and RX. For TX, a message is sent to AP

once every 10 minutes. For RX, a message is sent from AP to the sensor mode once

every 10 minutes. The following figure depicts battery capacity over time, logged every

minute.

Figure 23. Power consumption of ZigBee TX and RX compared to baseline test.

Transmit consumption curve decays in a slightly steeper norm than receive

mode. Therefore, caution should be taken when implementing the communication

protocol. Obviously, ZigBee should not be constantly turned on; thus, a dynamic

switching approach should be employed.

0 10 20 30 40 50 60 70
Time [minute]

2335

2340

2345

2350

2355

2360

2365

2370

2375

2380

2385

Ba
tte

ry
 C

ap
ac

ity
 [m

A
h]

Baseline
TX
RX

38

5.6 System Level Power Consumption Analysis

In this section the system’s power consumption is empirically analyzed by

dividing the sensor’s one-hour cycle into states, and then measuring the amount of

current drained in each state. Assuming the sensor is deployed on a highway with 65

mph speed limit and following distance of 1 second between vehicles, the result flow

rate for a single lane will be 3089 passenger vehicles per hour. Assume flash threshold

(See Section 5.1) is 10 pages (i.e., 2560 bytes), at which MCU buffers data from flash

to microSD card. Sensor logs time of arrival (TA), time of departure (TD), and number

of vehicles in the counter (N) for each detection. Additionally, sensor logs battery status

once every minute. During a one-hour period, sensor will transition through the

following states: battery status log, vehicle log, flash-to-microSD card buffering, status

beacon, and standby.

Figure 24. Example for battery status log line (a) and Vehicle timestamp (b).
VOLT, CAP, and SOC are battery voltage, capacity, and state-of-charge,

respectively.

During one hour, sensor will log 60 lines of battery status, each for 51 bytes. Figure 24

(a) shows an example line.

𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏 = 60 × 51 = 3060 [𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵/ℎ𝑜𝑜𝑜𝑜𝑜𝑜]

For each detected vehicle, the timestamps and counter compose 54 bytes of logged data

(or 56 bytes when counter is four digits), as shown in Figure 24 (b):

𝐵𝐵𝑣𝑣𝑣𝑣ℎ = 3089 × 54 = 166806 [𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵/ℎ𝑜𝑜𝑜𝑜𝑜𝑜]

N01_TA@21225109.160156<CR><LF>
N01_TD@21225109.519531<CR><LF>
N01_N#73<CR><LF>

b)

[BAT: VOLT = 4021 mV, CAP = 2480 mAh, SOC = 95 %]<CR><LF>a)

39

According to the aforementioned assumptions, the sensor will collect a total of 169,866

bytes during a one-hour time period. Since MCU moves data from flash to microSD

card every 10 flash pages (2560 bytes), the result in 66 transfers.

Timings and drained current for each state is measured using high accuracy Fluke 289

multimeter [35]. Figure 25 depicts sensor current consumption for various states. Each

data transfer is 1 second and consumes, at most, 30 mA.

Figure 25. Current consumption at various states.

Each hour the sensor sends a status beacon message and activates the ZigBee module

for one minute. Current drained is 24 mA. Sensor spends the majority of the time in

standby state, consuming an average of 4 mA. Let’s consider two scenarios: 1) sensor

shuts down the ZigBee module after system initialization and does not incorporate the

status beacon messages, and 2) status beacon messages used to periodically enable the

ZigBee module. In the first scenario, average current for one hour is determined by:

𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎 =
𝑇𝑇𝐵𝐵𝐼𝐼𝐵𝐵 + (3600 − 𝑇𝑇𝐵𝐵)𝐼𝐼𝑑𝑑

3600
=

66 × 30 + 3534 × 4
3600

= 4.48 [𝑚𝑚𝑚𝑚]

0 50 100 150 200 250 300 350 400 450 500
Time [s]

0

10

20

30

40

50

60

70

Cu
rr

en
t [

m
A

]

System initialization

Flash-to-microSD Card buffering

Standby/Detection

ZigBee periodic window

40

where 𝑇𝑇𝐵𝐵, 𝐼𝐼𝐵𝐵 are buffering time and current, respectively, and 𝐼𝐼𝑑𝑑 is the detection/standby

current. Thus, the life of a 2300 mAh battery with up to an 80% derating can be

calculated as:

𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵 =
2300
4.48

× 0.8 = 411 [ℎ]

In the second scenario, average current for one hour can be determined as:

𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎 =
66 × 30 + 60 × 24 + 3474 × 4

3600
= 4.81 [𝑚𝑚𝑚𝑚]

Therefore, the life for a 2300 mAh battery with up to an 80% derating factor can be

calculated as:

𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵 =
2300
4.81

× 0.8 = 383 [ℎ]

41

Chapter 6 Reinforcement Learning for Power Management

The optimization methods and algorithms introduced in the previous chapters

can be deemed hard-coded workarounds to minimize power consumption, as they lack

flexibility and resilience for adapting to varying conditions. Although some policies

lead to significant energy savings, cost to the system is response time and accuracy.

Hence, proper orchestration between alternate methods and policies is necessary. With

the problem of DPM, an algorithm controls power/performance tradeoff according to

workload on the system. In this chapter, DPM and RL are described in an effort to

further improve system power consumption.

6.1 Introduction to Reinforcement Learning

Reinforcement Learning (RL) is a branch of Artificial Intelligent (AI)

algorithms that mimics a natural way of gaining knowledge and experience (i.e.,

learning through trial and error). Typically, this technique is tended to classify

algorithms into one of two AI categories: supervised and unsupervised learning.

Supervised learning agents are trained on a set of labeled data provided by an external

expert, while unsupervised learning agents are trained on data that has no labels with a

goal of finding hidden structure within unlabeled data [36]. Many researchers argue that

RL falls somewhere between these two categories. In fact, RL can be considered an

unsupervised method because it does not rely on expert correct-based examples of data

sets [36]. Instead of finding hidden structures, RL attempts to maximize sparse rewards,

based on what the agent must learn to behave in a given environment.

Although the concept is natural and intuitive, several challenges are

characteristic of RL that are not characteristic of other types of machine learning (e.g.,

42

dilemma of exploration and exploitation). For example, should the agent exploit the

knowledge gained by selecting actions to maximize its rewards? Or should the agent

explore by selecting alternative untried actions for building a more realistic estimate and

understanding of the environment? With regard to the credit assignment, how should

one determine rewards and penalties associated with actions that lead to an arbitrary

state?

The most common way of formalizing an RL problem is utilizing Markov

Decision Processes (MDPs) [37], consisting of:

- finite state space 𝑆𝑆,

- set of available actions 𝐴𝐴,

- reward function 𝑅𝑅: 𝑆𝑆 × 𝐴𝐴 → 𝑅𝑅, and

- system dynamics function 𝑃𝑃: 𝑆𝑆 × 𝑆𝑆 × 𝐴𝐴 → [0,1].

This can be written as 𝑃𝑃(𝑠𝑠′|𝑠𝑠,𝑎𝑎) where:

 �𝑃𝑃(𝑠𝑠′|𝑠𝑠,𝑎𝑎)
𝑠𝑠′∈𝑆𝑆

= 1 ∀ 𝑠𝑠 ∈ 𝑆𝑆,∀ 𝑎𝑎 ∈ 𝐴𝐴

In other words, function 𝑃𝑃 determines the probability of transitioning to state 𝑠𝑠′, given

that the agent remains in state 𝑠𝑠 and performs action 𝑎𝑎. However, in an RL problem the

agent has no initial or prior knowledge of the rewards function nor the system dynamics

function.

Q-Learning is a standard RL algorithm, in which the agent’s experience is

expressed as sequences of states, actions, and rewards:

< 𝑠𝑠0,𝑎𝑎0, 𝑟𝑟1, 𝑠𝑠1,𝑎𝑎1, 𝑟𝑟2, … >

In state 𝑠𝑠0, the agent performed action 𝑎𝑎0 and was rewarded 𝑟𝑟1, resulting in

transitioning to state 𝑠𝑠1, and so on. Interactions with the environment form experience

43

the agent accumulates over time. The agent aims to maximize experience value —

typically realized as a discounted future reward. In Q-Learning, this value is given by a

function 𝑄𝑄∗(𝑠𝑠,𝑎𝑎) defined as the expected value of the cumulative discounted reward of

performing action 𝑎𝑎 in state 𝑠𝑠, and, hence, following the optimal path.

In general, the discounted future reward is defined as the immediate reward the

agent receives for the current action taken and the future reward. Given a finite series of

experiences:

< 𝑠𝑠0,𝑎𝑎0, 𝑟𝑟1, 𝑠𝑠1,𝑎𝑎1, 𝑟𝑟2, … , 𝑠𝑠𝑛𝑛−1,𝑎𝑎𝑛𝑛−1, 𝑟𝑟𝑛𝑛, 𝑠𝑠𝑛𝑛 >

total reward would be:

𝑅𝑅 = 𝑟𝑟1 + 𝑟𝑟2 + 𝑟𝑟3 + ⋯+ 𝑟𝑟𝑛𝑛

Therefore, future reward accumulated from time 𝑡𝑡 onward is:

𝑅𝑅𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝑟𝑟𝑡𝑡+1 + 𝑟𝑟𝑡𝑡+2 + ⋯+ 𝑟𝑟𝑛𝑛

However, due to the stochastic nature of the environment, the future reward for a given

action is not guaranteed the same when chosen next. Thus, a discount factor is

introduced to impart less significance on future rewards when compared a current

reward, as shown below:

𝑅𝑅𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝛾𝛾𝑟𝑟𝑡𝑡+1 + 𝛾𝛾2𝑟𝑟𝑡𝑡+2 + ⋯+ 𝛾𝛾𝑛𝑛−𝑡𝑡𝑟𝑟𝑛𝑛

where 0 ≤ 𝛾𝛾 < 1 is the discount factor. If 𝛾𝛾 = 0, then the algorithm will be short-

sighted, relying on only the immediate reward. If 𝛾𝛾 = 1, total future reward would be

the same, thus, it would make sense if identical actions consistently reap the same

rewards in a deterministic environment. A more balanced approach would be 𝛾𝛾 = 0.9.

In this case, the discounted reward can be rewritten as:

44

𝑅𝑅 = �𝛾𝛾𝑖𝑖−1𝑟𝑟𝑖𝑖

∞

𝑖𝑖=1

= 𝑟𝑟1 + 𝛾𝛾𝑟𝑟2 + 𝛾𝛾2𝑟𝑟3 + ⋯+ 𝛾𝛾𝑖𝑖−1𝑟𝑟𝑖𝑖 + ⋯

= 𝑟𝑟1 + 𝛾𝛾(𝑟𝑟2 + 𝛾𝛾(𝑟𝑟3 + ⋯))

Let 𝑅𝑅𝑡𝑡 be the reward accumulated from time 𝑡𝑡

𝑅𝑅𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝛾𝛾�𝑟𝑟𝑡𝑡+1 + 𝛾𝛾(𝑟𝑟𝑡𝑡+2 + ⋯)�

= 𝑟𝑟𝑡𝑡 + 𝛾𝛾𝑅𝑅𝑡𝑡+1

𝑄𝑄-function will be discussed in more detail in subsequent sections of Chapter 6.

6.2 RL for iVCCS

Originally, the sensor exhibited an all-on policy, wherein all on-board

components were turned on. This approach was not intuitive approach, and the sensor

lasted barely 40 hours. A more flexible operation was added wherein certain

components were turned on and off following a predetermined action flow. This

resulted in reduced current consumption, as shown in Figure 25. To further enhance

power consumption, sleep mode of ARM Cortex-M0 microprocessor was incorporated

into the operation. However, this caused misdetections and/or double counting vehicles

that had less than 2 seconds following distance as a consequence of long wake-up time

from the sleep mode following the detection of a passing vehicle. Sensor power cycle

can be divided into several phases, namely:

1. System initialization,

2. Data buffering,

3. ZigBee periodic communication, and

4. Standby/detection.

45

System initialization is a one-time phase and, therefore, has a negligible effect on long-

term power consumption. Data buffering is part of the data-driven phase and related to

the number of detected vehicles and the traffic flow. This phase was incorporated to

reduce current consumed by microSD card and operation duty-cycle. ZigBee periodic

communication was also implemented to reduce operation duty-cycle. Although sleep

mode drains current at 2 mA, standby phase drains at 4 mA. The problem with sleep

mode, as mentioned earlier, is that system response time increases and causes

misdetections. Notably, in a low traffic condition — where vehicle following distance is

more than 5 seconds — sleep mode is expected to perform faultlessly, as well as

conserve more power. A DPM was introduced to solve the problem.

6.3 Problem Formulation

An RL algorithm based on Q-Learning was proposed as an approach to

intelligently optimize the selection of power policies in a given state.

Assume the following:

• System can

o observe the environment (i.e., traffic congestion) and

o measure power consumption.

• Environment behavior can be modeled as high traffic (HT)/low traffic (LT).

• Power policies available to the agent (i.e., sensor) include:

o High Power (HP) mode and

o Low Power (LP) mode.

The system is modeled as a Markov Decision Process, with four-state space: High-

Power High-Traffic (HP-HT), High-Power Low-Traffic (HP-LT), Low-Power High

Traffic (LP-HT), and Low-Power Low-Traffic (LP-LT). Figure 26 shows the state

46

transition diagram of the system. Solid arrows are transitions made by the agent, and

dashed arrows are transitions made by environment. Although agent is not penalized for

transitions made by the environment, transitions should have high penalty in the reward

matrix to prevent agent from taking such an action.

Figure 26. State transition diagram.

The agent (i.e., iVCCS) can switch to either high-power or to low-power mode. Reward

function is defined as an R matrix, as indicated below.

𝑅𝑅 = �

15 −50 −50 −50
−50 −50 15 −50
−50 −20 15 −50
15 −50 −50 −50

�

A tuple of < 𝑠𝑠, 𝑎𝑎, 𝑟𝑟 > forms an experience in the table. 𝑄𝑄-function constructs the 𝑄𝑄-

table by giving the expected value of reward (i.e., 𝑄𝑄-value). The 𝑄𝑄-table can be either

randomly initialized or zero initialized, as indicated below.

HP-HT
1

HP-LT
2

LP-HT
4

LP-LT
3

47

𝑄𝑄 = �

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

�

6.4 Bellman Equation vs. Temporal Differences Equation

The proposed model consists of four states, as discussed earlier: HP-HT, HP-LT,

LP-HT, and LP-LT. The agent can control its state in HP or LP. The environment

controls sensor state through traffic, placing it in high or low traffic. Sensor should read

information for either to determine its state. When the agent performs an action, a

corresponding reward from R matrix is selected, and a new experience (i.e., tuple of

state, action, reward < 𝑠𝑠,𝑎𝑎, 𝑟𝑟 >) is formed. This result is the 𝑄𝑄-value 𝑄𝑄∗(𝑠𝑠,𝑎𝑎), which is

the expected value of action 𝑎𝑎 in state 𝑠𝑠, and then following optimal policy, defined as:

𝑄𝑄∗(𝑠𝑠,𝑎𝑎) = �𝑃𝑃(𝑠𝑠′|𝑠𝑠,𝑎𝑎)[ℛ𝑠𝑠𝑠𝑠′
𝑎𝑎 + 𝛾𝛾𝑉𝑉∗(𝑠𝑠′)]

𝑠𝑠′

where 𝑉𝑉∗(𝑠𝑠) is the expected value of following an optimal policy from state 𝑠𝑠.

Bellman equation is used to estimate this value, as follows.

𝑄𝑄(𝑠𝑠, 𝑎𝑎) = 𝑟𝑟 + 𝛾𝛾max
𝑎𝑎′

𝑄𝑄(𝑠𝑠′,𝑎𝑎′)

where max
𝑎𝑎′

𝑄𝑄(𝑠𝑠′,𝑎𝑎′) is the maximum 𝑄𝑄-value in the experience table (𝑄𝑄-table) for

future state 𝑠𝑠′ over all possible actions 𝑎𝑎′. Bellman equation provides the maximum

future reward as the reward received for the action taken in the current state 𝑠𝑠 plus the

maximum future reward for the next state 𝑠𝑠′. In some RL problems, newer values of 𝑄𝑄

can be given additional weight to increase their influence as they are deemed more

accurate. To weigh later experiences, the following Temporal Differences (TD)

equation can be used:

𝑄𝑄(𝑠𝑠,𝑎𝑎) = 𝑄𝑄(𝑠𝑠,𝑎𝑎) + 𝛼𝛼 �𝑟𝑟 + 𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎′

𝑄𝑄(𝑠𝑠′,𝑎𝑎′) − 𝑄𝑄(𝑠𝑠,𝑎𝑎)�

48

• 0 < 𝛼𝛼 ≤ 1 determines the weight of newer values compared to older ones.

• 𝛾𝛾 is the discount factor.

• 𝑟𝑟 is the reward corresponding to an action from R matrix.

Both cases were simulated to study their convergences. Figure 27 shows that Bellman

equation converges faster than the TD equation by a factor of 10 times.

Figure 27. Q-Matrix convergence: Bellman vs. TD equation.

By looking at the normalized 𝑄𝑄-matrix for both cases, it is clear that the agent was

rewarded for going to the optimal states 1 and 3, which correspond to HP-HT, and LP-

LT, respectively. Although it is not optimal, some rewards were given for transitioning

into state 2 from state 3, since it does not affect the detection and counting accuracy at

0 500 1000 1500 2000 2500 3000 3500 4000

Step Number

-150

-100

-50

0

50

100

A
cc

um
ul

at
ed

 Q
-V

al
ue

s

Bellman Equation

Temporal Differences Equation

49

the expense of power consumption. Figure 28 and Figure 29 depict the normalized

experience matrices (i.e., 𝑄𝑄-Matrix).

Figure 28. Normalized Q-Matrix for Bellman equation.

1 2 3 4

Action

1

2

3

4

St
at

e

-30

-30

-30

-30

30

-30

-30

-30

-30

-30

-35.76

-30

100

100

100

100

-20

0

20

40

60

80

100

50

Figure 29. Normalized Q-Matrix for TD equation.

A small difference can be observed in the 𝑄𝑄-Matrix and accumulated 𝑄𝑄-values of TD

equation. This is attributed to the fact that TD is a suboptimal solution to Bellman

functional equation [38]. States and actions 1, 2, 3, and 4 refer to HP-HT, HP-LT, LP-

LT, and LP-HT, respectively. Given the fast convergence of Bellman equation, it is

prudent to be chosen as the system 𝑄𝑄-function.

6.5 Reducing Number of Actions

In the previous section, the simulation was accomplished when agent had the

option to move to any state. Notably, it was penalized for choosing actions that resulted

in states controlled by the environment. In this section, the number of actions is reduced

to Low-Power and High-Power.

This approach eliminates the possibility of choosing non-permitted actions such

as the ones controlled by the environment. It also enhances convergence time by a

1 2 3 4

Action

1

2

3

4

St
at

e

-30

-30

-29.99

-29.98

29.98

-30

-29.99

-30

-30

-29.99

-29.99

-30

100

100

100

100

-20

0

20

40

60

80

100

51

factor of half, compared to results obtained earlier. Figure 30 and Figure 31 show 𝑄𝑄-

Matrix convergence and 𝑄𝑄-Matrix normalized.

Figure 30. Bellman equation convergence: 2 actions vs 4 actions.

Figure 31. Q-Matrix using two actions.

0 100 200 300 400 500

Step Number

-150

-100

-50

0

50

100

150

200

A
cc

um
ul

at
ed

 Q
-V

al
ue

s

Bellman Equation with 4 Actions

Bellman Equation with 2 Actions

1 2

Action

1

2

3

4

St
at

e

-30

-30

-30

-30

100

100

100

100

-20

0

20

40

60

80

100

52

6.6 Power Consumption Analysis

When employing an RL algorithm, circuit current drained by the system can be

calculated utilizing a similar approach to the analysis detailed in Section 5.6. In this

scheme, the algorithm places the microcontroller core in sleep mode during standby

state, reducing current consumed to 2 mA. Given that a vehicle approaches the sensor

zone, microcontroller experiences an interruption, exits sleep mode, and switches to

detection state. Consequently, drained current becomes a function of the number of

vehicles detected by the sensor. Figure 32 represents current consumed when a vehicle

is detected. Vehicle time spent traveling over the sensor determines length of detection

state, which was statistically calculated as an average 0.5 seconds.

Figure 32. Current consumed when MCU wakes from sleep mode.

Acknowledging previous assumptions, average current equation in Section 5.6

can be rewritten to express current consumption, leveraging the RL algorithm, as shown

below.

0 20 40 60 80 100

Time [sample]

0

1

2

3

4

5

C
ur

re
nt

 [m
A

]

0.5 second

Vehicle

arrival

Vehicle

departure

53

𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎 =
𝑇𝑇𝐵𝐵𝐼𝐼𝐵𝐵 + 𝑁𝑁𝑣𝑣𝑇𝑇𝑣𝑣𝐼𝐼𝑑𝑑 + (3600 − 𝑇𝑇𝐵𝐵 − 𝑁𝑁𝑣𝑣𝑇𝑇𝑣𝑣)𝐼𝐼𝑠𝑠

3600
= 3.71 [𝑚𝑚𝑚𝑚]

where 𝑁𝑁𝑣𝑣 is number of vehicles detected per hour; 𝑇𝑇𝑣𝑣 is the detection period; and 𝐼𝐼𝑠𝑠 is

the sleep state current. Given a 2300 mAh battery, battery life is extended, as follows:

𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵 =
2300 × 0.8

3.71
= 496 [ℎ]

6.7 Simulation using Real-World Data

Simulations detailed above were provided with synthetic data, where the agent is

randomly assigned a state and is required to take appropriate action. This process was

repeated over 5000 episodes, and each episode commences in a random state and

terminates when the agent reaches the goal state.

To simulate real-word scenarios, a code was developed that uses the same

sensor (iVCCS 2ndG) to combine vehicle timestamps collected during past deployments

for forming the state of the agent using two variables — power policy (LP or HP) and

traffic trend (HT or LT). Traffic trend is defined as vehicles detected per minute. A

threshold of 10 vehicle/min separates high from low traffic. The algorithm was tested

using two data sets — one collected on campus for 24 hours and another on Britton

Highway for 3 hours. Power policy 1 represents low power; 2 represents high power.

The following figures show the traffic trend and power policy chosen over time for both

data sets. Since campus traffic is rather low, the agent chose to keep power policy on

low (i.e., 1). High traffic on Britton Highway caused the agent to maintain high power

(i.e., 2). The switch between HP and LP can be observed at the beginning and end of the

graphs for Britton Highway, on which traffic increases and decreases due to lane

closure by traffic control for installation.

54

Figure 33. Traffic trend and power policy on campus.

Figure 34. Traffic trend and power policy on Britton Highway.

55

Chapter 7 Experiments and Results

7.1 Detection Algorithm Validation

iVCCS 2ndG was deployed on Britton Highway to test functionality and to verify

the algorithm worked as expected in a real-world scenario. Magnetometer sampling rate

was configured to 100 Hz, and the sensor was configured to collect timestamps of

vehicle arrivals and departures, as well as magnetic signatures. Battery capacity was

logged every minute to study power consumption of regular polling-based detection and

triggered vehicle detection. A camera was set up to record all vehicles for ground-truth

validation. Figure 35 shows the deployment setup.

Figure 35. iVCCS setup on Britton Highway.

Sensors were deployed at 11:26 AM for two hours. The first sensor reported

1765 detected vehicles; the second detected 1756. During the same time period, video

56

recording captured 1766 vehicles. Separation distance between the two sensors was 2

meters. Difference in the number of detected vehicles between the two sensors resulted

from cars changing lanes while traveling over the sensors. In general, an accuracy of

more than 99% was achieved for vehicle detection.

Power information were collected during the deployment (e.g., battery capacity,

battery voltage, and state of charge) and logged every minute. A third sensor was also

deployed on the same lane as the other two for testing the triggered detection

mechanism (See Section 5.2), which notifies the microcontroller only when a vehicle

approaches and passes through the sensible magnetic field of the iVCCS. The following

figure compares power consumption of two sensors — one with triggered detection and

the other without — for a period of over 180 minutes.

Figure 36. Battery capacity of regular and triggered detection sensors over a 180-
minute time period.

57

As the figure illustrates, depletion rate for the triggered detection sensor is lower

than regular detection. During the 180-minute period, regular detection firmware

consumed 133 mAh; triggered detection consumed 86 mAh, resulting in a 35%

improvement. It is worth noting that this enhancement was achieved only by stopping

the detection algorithm when there’s no vehicle in the vicinity. The microcontroller was

still in active mode, and all other peripherals (i.e., RF transmission, microSD card,

UARTs, and others) were switched on.

7.2 Power Optimization Validation

The system was tested in two scenarios: a lab test using a train continuously

running for 24 hours and a field test wherein two sensors were deployed at the south

entrance of campus for 24 hours. The sensor captured vehicle count and speed estimates

for individual cars. Reported speeds harmonized with the expectations and nominal

values of a real-world setting.

7.2.1 Lab Test

In the lab test, a sensor was placed under a miniature train track with a train

operating for 24 hours at varying speeds. Figure 37 illustrates the setup. The detection

algorithm was validated, and battery life was examined. Results were compared with

the empirical analysis detailed in Section 5.6.

58

Figure 37. Lab test using a train and two sensors placed under the track.

Figure 38 lists the frequency at which the sensors detected the train, along with

reported speed, which was calculated using distance between the two sensors.

Figure 38. Lab test: Speed estimates of the train for a time period over 24 hours.

0 2000 4000 6000 8000 10000 12000

Vehicle number

0

2

4

6

8

10

Sp
ee

d
[m

ph
]

2000 4000 6000 8000 10000 12000

0.5

1

1.5

59

The sensor consumed only 11 mAh in a time period over 24 hours (i.e., 0.458

mAh per hour) as Figure 39 shows, which is 10 times less than predicted in the analysis

described in Section 5.6.

Figure 39. Lab test: Battery capacity of the sensor for a time period over 24 hours.

7.2.2 On-Campus Test

For the field test, two sensors were deployed at the south entrance of campus:

one with the proposed DPM algorithm managing the power policy and the other

running a plain version of the firmware. Figure 40 depicts the sensors’ locations.

Sensors were deployed for 24 hours, collecting the number of vehicles that entered the

campus, time of arrival and departure, as well as battery capacity for comparing power

consumption of both versions of firmware. Speed was calculated in a postprocessing

stage, wherein detected vehicle timestamps were used with known separation distance

(e.g., 2 meters) between sensors.

0 500 1000 1500

Time [minute]

2298

2300

2302

2304

2306

2308

2310
B

at
te

ry
 C

ap
ac

ity
 [m

A
h]

60

Figure 40. Campus field test setup.

Average speed was 6 mph, which is fairly logical given sensor location at the

campus entrance and speed limit of 10 mph. Processing the collected power data

revealed that the sensor running original firmware (sans DPM) consumed

approximately 18 mAh, resulting in a battery life of over 100 days. Alternatively, the

sensor executing the DPM algorithm consumed only 4 mAh over 24 hours, indicating a

battery life of over 400 days. Both estimates assumed a 2300 mAh battery with a

derating factor of 80%. The original sensor detected only 11 more vehicles (2.9%) than

the sensor executing the DPM algorithm.

61

Figure 41. Campus field test: Number of vehicles detected and speed estimates.

Figure 42. Battery capacity of sensor with and without DPM
for a time period over 24 hours.

0 100 200 300 400 500 600 700 800 900

Vehicle number

0

5

10

15

Sp
ee

d
[m

ph
]

100 200 300 400 500 600 700 800 900

0.5

1

1.5 4

6

8

10

12

0 500 1000 1500

Time [minute]

2365

2370

2375

2380

2385

2390

2053

2053.5

2054

2054.5

2055

2055.5

2056

2056.5

2057

B
at

te
ry

 C
ap

ac
ity

 [m
A

h]

Without DPM

With DPM

62

Chapter 8 Conclusion and Future Work

8.1 Conclusion

This research presented algorithms and methods to optimize system response

and reduce power consumption of an iVCCS designed by the WECAD (Wireless and

Electromagnetic Compliance and Design) Center at the OU-Tulsa campus in Tulsa, OK.

The first prototype of the sensor adopted an all-on policy, in which all components were

active, thus depleting battery life in nearly 48 hours.

The second generation of the system (iVCCS 2ndG) was built around a more

powerful processing platform utilizing a 32-bit microcontroller. The first-generation

firmware was ported to the new platform in C language to accommodate robustness and

speed, which is critical for an improved response time without an increase in power

consumption. As part of the process, some algorithms were modified, while others were

introduced to shift the operation methodology from a polling mode to an event-driven,

interrupt-based procedure, wherein the system responds to interactions from the

surrounding environment.

Two operation modes (i.e., HP and LP) were designed to leverage a tradeoff

between consumed energy and response time, which affects detection accuracy relative

to traffic flow. An RL approach was proposed to design a DPM algorithm for observing

traffic and controlling the system’s power policy according to the environment and

agent states.

An analysis of energy utilization by communication and storage subsystems

were performed, in addition to a system level study. A conservative analysis revealed a

63

battery life of approximately 18 days. Experimental results showed that overall battery

life of the system was extended to over 200 days for a 2300 mAh battery.

8.2 Future Work

iVCCS 2ndG design includes a port to host energy harvesting technology.

Several energy sources have been considered by the research community; harvesting

technology is also a hot topic in the IoT domain. The final goal for the project is

designing self-powered, maintenance-free, wireless sensor nodes. Table 2 [39] shows a

comparison of energy sources and the power outputs for typical energy scavenging

devices based on published studies and experiments.

Table 2. Comparison of energy sources
Energetic Source Power Density

Solar (outdoors)
15 mW/cm2 (direct sun)

0.15 mW/cm2 (cloudy day)

Vibrations 0.01-0.1 mW/cm3

Thermoelectric – 10 °C gradient 40 µW/cm2

Acoustic noise
3×10-6 mW/cm2 at 75 dB

9.6-4 mW/cm2 at 100 dB

Passive human-powered systems 1.8 mW (shoe inserts)

In general, three sources of energy can be distinguished from the ambient

environment: Photovoltaic Cells (PV), Mechanical Vibration (MV), and

Electromagnetic Generators (EG) [40], [41]. PV cells are perhaps the most common

energy harvesting technique for WSNs. This fact is not a big surprise, as it is well-

established in the literature [42], [43]. Advancement in this field has reached a level in

64

which systems can be solely powered by PV cells sans energy storage or converters

[44]. Although such an approach is not feasible for experiments like those detailed in

this research, the example provided assures that an ample amount of energy can be

harvested from solar power. In view of the importance and efficiency of PV cells, the

iVCCS 2ndG is designed to connect a solar panel for energy harvesting.

Literature suggests the use of mechanical vibration as a viable source of energy

when a sufficient mechanical excitation is available [40], [41], [45]. Generally, this kind

of energy can be harvested using three main approaches, namely piezoelectric,

electromagnetic, and electrostatic generators — each characterized by advantages and

disadvantages [45]. Given the target environment of our sensor (e.g., vehicles with more

than 2 axles pass on highways), the vibration generated by the vehicles could be a

significant amount of harvested energy by a sensor node. Likewise, using

electromagnetic flux for vehicle detection can be utilized for scavenging power, as

explained in [45].

Another widely used type of energy is RF, especially given the current

ubiquitous deployments of wireless APs. Although results hold true in environments

characterized by urban streets, residential and shop buildings (e.g., dense in some cases)

are increasing. Thus, it might end up that results do not hold true on highways, on

which major dependence would be placed on sub-GHz frequencies. In [46], power

measurements in an urban scenario revealed that maximum power levels were observed

in the GSM-800 band, while much lower power levels were recorded in the GSM-1800

band due to propagation loss. Hence, the proposed technologies should be studied and

evaluated in light of the operating environment intended for iVCCS.

65

References

[1] W. Vereecken et al., “Power consumption in telecommunication networks:

overview and reduction strategies,” IEEE Communications Magazine, vol. 49,

no. 6, pp. 62–69, Jun. 2011.

[2] ITS (Intelligent Transportation Society of America), “Annual Report 2010-

2011,” 2011.

[3] ITS (Intelligent Transportation Society of America), “Rise of the Real-Time

Traveler,” 2015.

[4] Cisco, “Cisco Connected Roadways – IoT in Roads, Traffic, Transit - Cisco.”

[Online]. Available:

https://www.cisco.com/c/en/us/solutions/industries/transportation/connected-

roadways.html. [Accessed: 14-Apr-2018].

[5] L. E. Y. Mimbela and L. a Klein, “A Summary of Vehicle Detection and

Surveillance Technologies used in Intelligent Transportation Systems.”

[6] M. T. Alamiri, “IoT Systems for Travel Time Estimation,” University of

Oklahoma, 2017.

[7] W. Balid, “Fully Autonomous Self-Powered Intelligent Wireless Sensor for Real-

Time Traffic Surveillance in Smart Cities,” University of Oklahoma, 2016.

[8] W. Balid, H. Tafish, and H. H. Refai, “Intelligent Vehicle Counting and

Classification Sensor for Real-Time Traffic Surveillance,” IEEE Transactions on

Intelligent Transportation Systems, pp. 1–11, 2017.

[9] W. Balid and H. H. Refai, “Real-Time Magnetic Length-Based Vehicle

Classification: Case Study for Inductive Loops and Wireless Magnetometer

66

Sensors in Oklahoma State,” 2018.

[10] Y. Guyodo and J.-P. Valet, “Global changes in intensity of the Earth’s magnetic

field during the past 800[thinsp]kyr,” Nature, vol. 399, no. 6733, pp. 249–252,

1999.

[11] NASA, “2012: Magnetic Pole Reversal Happens All The (Geologic) Time,”

2015. [Online]. Available: https://www.nasa.gov/topics/earth/features/2012-

poleReversal.html. [Accessed: 15-Apr-2018].

[12] N. Wahlstrom and F. Gustafsson, “Magnetometer Modeling and Validation for

Tracking Metallic Targets,” IEEE Transactions on Signal Processing, vol. 62,

no. 3, pp. 545–556, Feb. 2014.

[13] C. Park, P. H. Chou, Y. Bai, R. Matthews, and A. Hibbs, “An ultra-wearable,

wireless, low power ECG monitoring system,” in IEEE 2006 Biomedical Circuits

and Systems Conference Healthcare Technology, BioCAS 2006, 2006, pp. 241–

244.

[14] M. T. Lazarescu, “Design of a WSN platform for long-term environmental

monitoring for IoT applications,” IEEE Journal on Emerging and Selected

Topics in Circuits and Systems, vol. 3, no. 1, pp. 45–54, 2013.

[15] O. Olorode and M. Nourani, “Reducing leakage power in wearable medical

devices using memory nap controller,” in 2014 IEEE Dallas Circuits and

Systems Conference: Enabling an Internet of Things - From Sensors to Servers,

DCAS 2014, 2014, pp. 1–4.

[16] B. Martinez, M. Monton, I. Vilajosana, and J. D. Prades, “The Power of Models:

Modeling Power Consumption for IoT Devices,” IEEE Sensors Journal, vol. 15,

67

no. 10, pp. 5777–5789, Oct. 2015.

[17] I. Joe and M. Shin, “Energy management algorithm for solar-powered energy

harvesting wireless sensor node for Internet of Things,” IET Communications,

vol. 10, no. 12, pp. 1508–1521, Aug. 2016.

[18] P. Kamalinejad, C. Mahapatra, Z. Sheng, S. Mirabbasi, V. C. M. Leung, and Y.

L. Guan, “Wireless energy harvesting for the Internet of Things,” IEEE

Communications Magazine, vol. 53, no. 6, pp. 102–108, 2015.

[19] K.-Y. Chan, H.-J. Phoon, C.-P. Ooi, W.-L. Pang, and S.-K. Wong, “Power

management of a wireless sensor node with solar energy harvesting technology,”

Microelectronics International, vol. 29, no. 2, pp. 76–82, May 2012.

[20] M. Hassanalieragh et al., “Health Monitoring and Management Using Internet-

of-Things (IoT) Sensing with Cloud-Based Processing: Opportunities and

Challenges,” Proceedings - 2015 IEEE International Conference on Services

Computing, SCC 2015, pp. 285–292, 2015.

[21] L. B. and G. D. M. E.-Y. Chung, “Dynamic power management using adaptive

learning tree,” ICCAD ’99 Proceedings of the 1999 IEEE/ACM international

conference on Computer-aided design, pp. 274–279, 1999.

[22] V. L. Prabha and E. C. Monie, “Hardware Architecture of Reinforcement

Learning Scheme for Dynamic Power Management in Embedded Systems,”

EURASIP Journal on Embedded Systems, vol. 2007, pp. 1–6, 2007.

[23] A. Iranfar, M. Zapater, and D. Atienza, “A machine learning-based approach for

power and thermal management of next-generation video coding on MPSoCs,”

Proceedings of the Twelfth IEEE/ACM/IFIP International Conference on

68

Hardware/Software Codesign and System Synthesis Companion - CODES ’17,

pp. 1–2, 2017.

[24] K. Bhatti, C. Belleudy, and M. Auguin, “Power management in real time

embedded systems through online and adaptive interplay of DPM and DVFS

policies,” Proceedings - IEEE/IFIP International Conference on Embedded and

Ubiquitous Computing, EUC 2010, pp. 184–191, 2010.

[25] STMicroelectronics, “STM32L071KB - Ultra-low-power ARM Cortex-M0+

MCU with 128-Kbytes Flash, 32 MHz CPU - STMicroelectronics.” [Online].

Available: http://www.st.com/en/microcontrollers/stm32l071kb.html. [Accessed:

08-Apr-2018].

[26] M. C. U. Arm, “STM32L071x8 STM32L071xB,” no. March. 2016.

[27] Kionix, “Tri-Axis Magnetometer/Tri-Axis Accelerometer - KMX62.” [Online].

Available: https://www.kionix.com/product/KMX62-1031.

[28] ZLG, “Nano Type ZigBee Wireless Module.” [Online]. Available:

http://www.zlg.com/wireless/wireless/product/id/136.html. [Accessed: 09-Apr-

2018].

[29] Quectel, “GNSS L76 - Quectel Wireless Solutions.” .

[30] SiTime, “SiT1552: 1.2mm2, NanoPower, ±10 ppm 32 kHz TCXO | SiTime.” .

[31] Macronix, “Macronix MX25R6435F Datasheet.” pp. 1–86, 2017.

[32] Texas Instrument, “BQ27621-G1 System-Side Fuel Gauge with Dynamic

Voltage Correlation, Battery Gas Gauge | TI.com.” [Online]. Available:

http://www.ti.com/product/BQ27621-G1/description. [Accessed: 09-Apr-2018].

[33] Analog-Devices, “Adp5091-2.” .

69

[34] SanDisk Corporation, “SanDisk SD Card Product Manual,” vol. 95035, no. 80, p.

123, 2004.

[35] Fluke, “True-RMS AC Voltage and Current Logging Multimeter | Fluke 289.”

[Online]. Available: http://en-us.fluke.com/products/digital-multimeters/fluke-

289-digital-multimeter.html. [Accessed: 12-Apr-2018].

[36] R. S. Sutton and A. G. Barto, Reinforcement Learning : An Introduction. 2015.

[37] D. L. Poole and A. K. Mackworth, Artificial intelligence: Foundations of

computational agents, vol. 9780521519. 2010.

[38] J. Skach, I. Puncochar, and F. L. Lewis, “Optimal active fault diagnosis by

temporal-difference learning,” in 2016 IEEE 55th Conference on Decision and

Control (CDC), 2016, no. Cdc, pp. 2146–2151.

[39] M. A. M. Vieira, C. N. Coelho, D. C. da Silva, and J. M. da Mata, “Survey on

wireless sensor network devices,” EFTA 2003. 2003 IEEE Conference on

Emerging Technologies and Factory Automation. Proceedings (Cat.

No.03TH8696), vol. 1, pp. 537–544, 2003.

[40] S. Chalasani and J. M. Conrad, “A survey of energy harvesting sources for

embedded systems,” Conference Proceedings - IEEE SOUTHEASTCON, pp.

442–447, 2008.

[41] M. K. Stojčev, M. R. Kosanovic, and L. R. Golubovic, “Power management and

energy harvesting techniques for wireless sensor nodes,” Proceedings of the 9th

International Conference on Telecommunication in Modern Satellite, Cable, and

Broadcasting Services 2009 (TELSIKS ’09), pp. 65–72, 2009.

[42] V. Raghunathan, S. Generiwal, M. Srivastava, S. Ganeriwal, and M. Srivastava,

70

“Emerging techniques for long lived wireless sensor networks,” IEEE

Communications Magazine, vol. 44, no. 4, pp. 108–114, Apr. 2006.

[43] Y. Ramadass, “Powering the internet of things,” in 2014 IEEE Hot Chips 26

Symposium (HCS), 2014, pp. 1–50.

[44] H. G. Lee and N. Chang, “Powering the IoT: Storage-less and converter-less

energy harvesting,” 20th Asia and South Pacific Design Automation Conference,

ASP-DAC 2015, pp. 124–129, 2015.

[45] S. P. Beeby, M. J. Tudor, and N. M. White, “Energy harvesting vibration sources

for microsystems applications,” Measurement Science and Technology, vol. 17,

no. 12, pp. R175–R195, 2006.

[46] F. Giuppi, K. Niotaki, A. Collado, and A. Georgiadis, “Challenges in energy

harvesting techniques for autonomous self-powered wireless sensors,” 2013 43rd

European Microwave Conference, EuMC 2013 - Held as Part of the 16th

European Microwave Week, EuMW 2013, pp. 854–857, 2013.

71

Appendix A: Ported Algorithms

Detection and counting algorithm.

/* =============== Detection Algorithm ================ */
if (KMX62_DRDY_INT_Flag == 1) // Whenever data ready interrupt is triggered
{
 KMX62_DRDY_INT_Flag = 0; // Clear the flag
 KMX62_GetData(); // Get the data reading

 // Wait for the OTH interrupt to come from the magnetometer
 if (KMX62_OTH_INT_Flag == 1)
 {
 // Check if time of arrival should be logged
 if (TA_Flag == 1)
 {
 TA_Flag = 0;
 // Display time of arrival
 RTC_GetDateTime(vehTime, vehDate);
 sprintf((char*)uart_tx_buffer,"%s\n%s %s %s\n",

"Vehicle Detected!", "Arrival Time:", vehDate, vehTime);
 HAL_UART_Transmit(&huart2, (uint8_t *)uart_tx_buffer,

strlen((const char*)uart_tx_buffer), 5000);
 DP_counter = 0;
 HAL_TIM_Base_Start_IT(&htim7);
 }
 if (MEMS_Magnetometer < MAG_HTH_THRESHOLD)
 {
 if (!(htim6.Instance->CR1 & TIM_CR1_CEN_Msk))
 {

 // In other words, check if TIM6 is disabled
 // Take a reference point of time of departure
 RTC_GetDateTime(vehTime, vehDate);
 // Start the debounce timer
 HAL_TIM_Base_Start_IT(&htim6);
 }

 // If HTH debounce flag is triggered, then vehicle departure is
confirmed
 if (HTH_Debounce_Flag == 1)
 {
 // Stop the HTH debounce timer
 HAL_TIM_Base_Stop_IT(&htim6);
 // Clear the flag
 HTH_Debounce_Flag = 0;
 // Stop the PDT debounce timer
 HAL_TIM_Base_Stop_IT(&htim7);
 // Clear the DP counter
 DP_counter = 0;
 // Save the reference departure time as the actual one
 sprintf((char*)uart_tx_buffer,"%s %s %s\n",

"Departure Time:", vehDate, vehTime);
 HAL_UART_Transmit(&huart2, (uint8_t *)uart_tx_buffer,
 strlen((const char*)uart_tx_buffer), 5000);
 // Increase the vehicle counter
 vehiclesCounter++;
 sprintf((char*)uart_tx_buffer,"%s %d\n",

"Vehicles Counter:", vehiclesCounter);
 HAL_UART_Transmit(&huart2, (uint8_t *)uart_tx_buffer,
 strlen((const char*)uart_tx_buffer), 5000);
 // Clear the OTH flag indicating the end of the detection cycle
 KMX62_OTH_INT_Flag = 0;

72

 // Read the Interrupt Latch Release Register to clear the
interrupt
 KMX62_I2C_BufferRead(KMX62_DeviceAddress, &KMX62_char,
 KMX62_INL, 1);
 // Calibrate the magnitude references
 Ref_Mag_Calb();
 }
 }
 else
 {
 // Stop the HTH debounce timer
 HAL_TIM_Base_Stop_IT(&htim6);
 // Clear the flag
 HTH_Debounce_Flag = 0;
 }

 // Check if the detection period exceeds the specified delay (Whether a vehicle
is parked on top of the sensor
 if (DP_counter >= DP_Delay)
 {
 UART_send("Stuck vehicle... Re-calibrating... ");
 // Stop the DP timer
 HAL_TIM_Base_Stop_IT(&htim7);
 // Clear the DP counter
 DP_counter = 0;
 /// TODO: Execute function to check if vehicle is on top of the sensor
 // Execute magnetometer threshold recalibration function
 Ref_Mag_Calb();
 }
 }
}

73

Adaptive compensation of baseline drift.

void Ref_Mag_Calb ()
{
 // Raise the magnitude reference flag to prevent nested calls to Ref_Mag_Calb
 Ref_Mag_Calb_Flag = 1;

 // Stop all timers in case they are on
 HAL_TIM_Base_Stop_IT(&htim6);
 HAL_TIM_Base_Stop_IT(&htim7);

 // Clear their flags
 HTH_Debounce_Flag = 0;
 DP_counter = 0;

 // Loop for the number of the moving average filter taps
 for (int i = 0; i < MAF_Taps; i++)
 {
 // Wait for the data ready interrupt
 while (!KMX62_DRDY_INT_Flag) {};

 // Clear the flag once we detect that it is raised
 KMX62_DRDY_INT_Flag = 0;

 // Read the magnitude
 KMX62_GetData();

 // Accumulate readings for the three axises separately and the
magnitude
 AVG_Mag_Conv_X_Axis = AVG_Mag_Conv_X_Axis + MEMS_Mag_Xout_Conv;
 AVG_Mag_Conv_Y_Axis = AVG_Mag_Conv_Y_Axis + MEMS_Mag_Yout_Conv;
 AVG_Mag_Conv_Z_Axis = AVG_Mag_Conv_Z_Axis + MEMS_Mag_Zout_Conv;
 }

 // Average the 3 axises readings and assign the result to the reference
variables
 MEMS_Mag_Conv_Xout_ref = AVG_Mag_Conv_X_Axis / MAF_Taps;
 MEMS_Mag_Conv_Yout_ref = AVG_Mag_Conv_Y_Axis / MAF_Taps;
 MEMS_Mag_Conv_Zout_ref = AVG_Mag_Conv_Z_Axis / MAF_Taps;

 // Clear variables
 AVG_Mag_Conv_X_Axis = 0;
 AVG_Mag_Conv_Y_Axis = 0;
 AVG_Mag_Conv_Z_Axis = 0;
 // Clear the OTH interrupt flag to eliminate the missdetection that happens
after threshold recalibration
 KMX62_OTH_INT_Flag = 0;
 // Clear the reference magnitude calibration flag
 Ref_Mag_Calb_Flag = 0;
 UART_send("MGM re-calibration done!\n");
}

74

Adaptive compensation of RTC frequency drift.

/* =============== RTC Drift Compensation ================ */
if (Calibrate_RTC_Drift)
{
 // Disable interrupts on LINE 4 and 5, which corresponds to
interrupts on GPIO 4 and 5, i.e. MGM data ready and motion interrupt
 EXTI->IMR &= ~(EXTI_IMR_IM5 | EXTI_IMR_IM4);
 // Check whether it is RTC 1 Hz signal or PPS that should be
measured now
 if (RTC_PPS_Meas_Round == 0) // RTC Round = 0, PPS
Round = 1
 {
 if (meas_count < RTC_MEAS_PERIOD) // ...and we still
have measurments to take...
 {
 // Set the frequency measuring flag
 measure_freq = 1;
 // Wait until the measurment is done
 while(measure_freq);
 // Accumulate the counter value
 counter_RTC += (htim22.Instance->CNT << 16) |
(htim21.Instance->CNT);
 // Increase the number of measurments taken
 meas_count++;
 }
 else // If we already collected RTC_MEAS_PERIOD
measurments...
 {
 // ...calculate the average
 counter_RTC = counter_RTC / RTC_MEAS_PERIOD;
 /******** Debug Purpose **************/
 sprintf((char*)uart_tx_buffer,"RTC Counter: %d\n",
counter_RTC);
 HAL_UART_Transmit(&huart2, (uint8_t
)uart_tx_buffer, strlen((const char)uart_tx_buffer), 5000);
 /*************************************/
 // Set the round now for PPS
 RTC_PPS_Meas_Round = 1;
 // Clear the meas_count
 meas_count = 0;
 }
 }

 else // Then it is the PPS turn
 {
 if (meas_count < RTC_MEAS_PERIOD) // ...and we still
have measurments to take...
 {
 // Set the frequency measuring flag
 measure_freq = 1;
 // Wait until the measurment is done
 while(measure_freq);
 //

75

 // Accumulate the counter value
 counter_PPS += (htim22.Instance->CNT << 16) |
(htim21.Instance->CNT);
 // Increase the number of measurments taken
 meas_count++;
 }

 else // If we already collected RTC_MEAS_PERIOD

measurments...

 {
 // ...calculate the average
 counter_PPS = counter_PPS / RTC_MEAS_PERIOD;

 /******** Debug Purpose **************/
 sprintf((char*)uart_tx_buffer,"PPS Counter: %d\n",
counter_PPS);
 HAL_UART_Transmit(&huart2, (uint8_t
)uart_tx_buffer, strlen((const char)uart_tx_buffer), 5000);
 /*************************************/

 // Calculate the corresponding time difference to
be written on RTC Shift registers
 RTC_Drift = (((float)counter_PPS -
(float)counter_RTC)/8000000.0f);
 // Update the RTC shift register
 // Read 22.4.10 RTC synchronization in Reference
Manual to understand why is the following calculations
 if (RTC_Drift < 0)
 HAL_RTCEx_SetSynchroShift(&hrtc,
RTC_SHIFTADD1S_RESET, (uint32_t)(fabsf(RTC_Drift)*256.0f));
 else
 HAL_RTCEx_SetSynchroShift(&hrtc,
RTC_SHIFTADD1S_SET, (uint32_t)((1-RTC_Drift)*256.0f));

 sprintf((char*)uart_tx_buffer,"RTC Drift in
seconds: %f\n", RTC_Drift);
 HAL_UART_Transmit(&huart2, (uint8_t
)uart_tx_buffer, strlen((const char)uart_tx_buffer), 5000);
 UART_send("RTC Calibrated!\n");
 // Clear the meas_count
 meas_count = 0;
 // Clear freq counters
 counter_PPS = 0;
 counter_RTC = 0;
 // Set the measurment round for RTC
 RTC_PPS_Meas_Round = 0;
 // Clear the calibration flag
 Calibrate_RTC_Drift = 0;
 // Enable interrupts for MGM
 EXTI->IMR |= (EXTI_IMR_IM5 | EXTI_IMR_IM4);
 }
 }
}

76

Optimized ARM DSP arithmetic.

Terje Mathisen numeric to ASCII conversion.

// These functions cause a delay of 0.75 mSec
MEMS_Magnetometer = sqrt(pow(X,2)+pow(Y,2)+pow(Z,2));

// The C math functions are replaced with fast, optimized ARM math
functions
// These take 0.13 mSec
arm_power_f32(&X, 1, &X2);
arm_power_f32(&Y, 1, &Y2);
arm_power_f32(&Z, 1, &Z2);
arm_add_f32(&X2, &Y2, &X2Y2_sum, 1);
arm_add_f32(&X2Y2_sum, &Z2,&X2Y2Z2_sum, 1);
arm_sqrt_f32(X2Y2Z2_sum, &MEMS_Magnetometer);

typedef uint32_t fix4_28;
void itoa(char** int_buf, int16_t value)
{
 uint32_t val;
 if (value < 0) val = -value;
 else val = value;

 *int_buf = calloc(6, sizeof(char));

 fix4_28 const f1_10000 = (1 << 28) / 10000;
 fix4_28 tmplo, tmphi;

 uint32_t lo = val % 100000;
 uint32_t hi = val / 100000;

 tmplo = lo * (f1_10000 + 1) - (lo / 4);
 tmphi = hi * (f1_10000 + 1) - (hi / 4);

 for(size_t i = 0; i < 5; i++)
 {
 (*int_buf)[i + 0] = '0' + (char)(tmphi >> 28);
 (*int_buf)[i + 5] = '0' + (char)(tmplo >> 28);
 tmphi = (tmphi & 0x0fffffff) * 10;
 tmplo = (tmplo & 0x0fffffff) * 10;
 }
 char* p = *int_buf;
 if (*((uint64_t*) p) == 0x3030303030303030)
 p += 8;
 if (*((uint32_t*) p) == 0x30303030)
 p += 4;
 if (*((uint16_t*) p) == 0x3030)
 p += 2;
 if (*((uint8_t*) p) == 0x30)
 p += 1;
 free(*int_buf);

77

 if (value < 0)
 {
 p -= 1;
 p[0] = '-';
 }
 *int_buf = p;
}

78

Appendix B: Optimized Algorithms

Data buffering technique: RAM-to-Flash.

Data buffering technique: Flash-to-microSD card.

uint8_t Flash_WriteData(uint8_t* data)
{
 // Copy data into the buffer
 memcpy(flashBuf + flashBufSize, data, strlen((char*)data));
 // Change buffer size accordingly
 flashBufSize += strlen((char*)data);
 // If buffer size exceeds 256, move a page into the flash
memory
 if (flashBufSize >= 256)
 {
 // Write only one page (256 bytes from the buffer)
 if (Flash_WritePage(flashBuf, flashAddr, 256))
 {
 // Increase the flash address
 flashAddr += 256;
 // Shift remaining data in the buffer to the
beginning of the buffer
 memmove(flashBuf, flashBuf+256, flashBufSize-256);
 // Adjust the buffer size
 flashBufSize -= 256;
 // Increase number of pages written to flash
 flashPagesNum++;
 }
 else // If flash page write operation failed...
 {
 // Change back the buffer size
 flashBufSize -= strlen((char*)data);
 return 0;
 }
 }
 return 1;
}

uint8_t writeData(char* data)
{
 if (!log_data) return 0;
 // Erase the sector first. If the address points to the beginning of
a sector, erase it
 // Every 16 pages form a sector
 if (flashPagesNum % 16 == 0)
 if (!Flash_SE(flashAddr))
 return 0;
 // Write data to the flash memory
 if (!Flash_WriteData((uint8_t*)data)) return 0;
 // If Number of written pages on flash exceeds a threshold move data
to the SD card
 if (flashPagesNum >= FLASH_PAGES_THRESHOLD) {

79

Communication scheme.

 // Turn on SD card switch
 HAL_GPIO_WritePin(LS_uSD_GPIO_Port, LS_uSD_Pin, GPIO_PIN_SET);
 HAL_Delay(100);
 // Mount SD card
 if(FATFS_LinkDriver(&USER_Driver, SDPath) == 0) {
 if(f_mount(&SDFatFs, (TCHAR const*)SDPath, 0) != FR_OK)
 return 0; }
 // Open data file
 if (!newDataFile)
 openDataFile(dataFile, 0);
 else
 openDataFile(dataFile, 1);
 // Read data from flash and write to SD card recursively
 uint8_t tempFlashBuf[256] = {0};
 while(flashPagesNum != 0) {
 // Read one page
 Flash_ReadData(tempFlashBuf, flashAddr-
(flashPagesNum*256), 256);
 // Decrease number of occupied pages in flash
 flashPagesNum--;
 // Write one page data to SD card
 if (writeToFile((char*)tempFlashBuf) != FR_OK)
 return 0;
 }
 flashBuf[flashBufSize] = '\0';
 if (writeToFile((char*)flashBuf) != FR_OK)
 return 0;
 // Reset the flash buffer
 memset(flashBuf, 0, 256);
 // Reset buufer size
 flashBufSize = 0;
 // Reset flash writing address to the beginning
 flashAddr = 0x00000000;
 // Close data file
 if (closeDataFile(0) != FR_OK) return 0;
 // Unmount the SD card
 f_mount(0, (TCHAR const*)SDPath, 0);
 FATFS_UnLinkDriver(SDPath);
 // Turn off SD card switch
 HAL_GPIO_WritePin(LS_uSD_GPIO_Port, LS_uSD_Pin,
GPIO_PIN_RESET);
 }
 return 1;
}

if (Process_CMD_Flag) {
#ifdef _STATUS_BEACON
 // Resetting the counter, giving the user another 2 minutes to send
commands over ZigBee
 zigbee_on_cntr = 0;
#endif // _STATUS_BEACON
 Process_CMD_Flag = 0;
 zigbee_send("CMD Received: ");
 zigbee_send(cmd_buffer);
 zigbee_send("\n");
 handle_command(cmd_buffer);
}

80

/* =============== 1-Minute Reference, Reinforcement Learning Algorithm,
and Status Beacon Messages ================ */
if (Alarm_Min_Flag && !OTH_INT_Flag)
{
#ifdef _STATUS_BEACON
 // Status beacon
 uint8_t minute = floor(((float)(timestamp)/3600.0f -
(float)floor(timestamp/3600))*60.0f);
 if (minute == 0 || minute == 15 || minute == 30 || minute == 45)
 {
 // Enable ZigBee
 HAL_GPIO_WritePin(LS_ZigBee_GPIO_Port, LS_ZigBee_Pin,
GPIO_PIN_SET);
 // Wait a few milliseconds
 HAL_Delay(100);
 // Enable terminal messages
 sendTerminal = 1;
 // Send battery status and vehicles counter
 sprintf(uart_tx_buffer, "BAT: VOLT = %d mV, CAP = %d mAh, SOC = %d
%%\r\nVehicles Counter: %d\r\n", batVolt(), batRemainingCapacity(),
batSOC(), vehiclesCounter);
 zigbee_send(uart_tx_buffer);
 // Wait another minute for command requests from AP/user
 zigbee_wait_enable = 1;
 }
 // If the AP/user sends a command, 'zigbee_on_cntr' will be reset
giving 2 minutes before ZigBee is turned off
 // by the following block
 if (zigbee_wait_enable)
 {
 if (++zigbee_on_cntr == ZIGBEE_ON_PERIOD)
 {
 // Disable the wait flag
 zigbee_wait_enable = 0;
 // Clear the counter
 zigbee_on_cntr = 0;
 // Turn off ZigBee
 HAL_GPIO_WritePin(LS_ZigBee_GPIO_Port, LS_ZigBee_Pin,
GPIO_PIN_RESET);
 // Disable terminal messages
 sendTerminal = 0;
 }
 }
#endif // _STATUS_BEACON
}

	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	Chapter 1 Introduction
	Chapter 2 Background and Related Work
	2.1 Magnetometer Theory of Operation
	2.2 Related Research Work

	Chapter 3 System Platform Overview
	3.1 Microcontroller
	3.2 Magnetometer
	3.3 ZigBee Module
	3.4 GPS
	3.5 Real-Time Clock
	3.6 Data Storage
	3.7 Battery Gauge
	3.8 Energy Harvester and Management Unit

	Chapter 4 Porting Algorithms from 1stG to 2ndG
	4.1 Detection and Counting Algorithm
	4.2 Adaptive Compensation of Baseline Drift
	4.3 Adaptive Compensation of the RTC Frequency Drift
	4.4 Optimized ARM DSP Functions
	4.5 Text Formatting Function

	Chapter 5 System Algorithms and Power Analysis
	5.1 Data Buffering Technique
	5.2 Triggered Vehicle Detection
	5.3 Communication Scheme
	5.4 microSD Card Power Analysis
	5.4.1 Continuous Data Transfer
	5.4.2 Triggered Data Transfer

	5.5 ZigBee Power Analysis
	5.5.1 Theoretical Analysis
	5.5.2 Empirical Data Collection

	5.6 System Level Power Consumption Analysis

	Chapter 6 Reinforcement Learning for Power Management
	6.1 Introduction to Reinforcement Learning
	6.2 RL for iVCCS
	6.3 Problem Formulation
	6.4 Bellman Equation vs. Temporal Differences Equation
	6.5 Reducing Number of Actions
	6.6 Power Consumption Analysis
	6.7 Simulation using Real-World Data

	Chapter 7 Experiments and Results
	7.1 Detection Algorithm Validation
	7.2 Power Optimization Validation
	7.2.1 Lab Test
	7.2.2 On-Campus Test

	Chapter 8 Conclusion and Future Work
	8.1 Conclusion
	8.2 Future Work

	References
	Appendix A: Ported Algorithms
	Appendix B: Optimized Algorithms

